# What is the radiological/ecological impact of NORM residues and effluents on the environment

Hildegarde Vandenhove and Lieve Sweeck

Belgian Nuclear Research Centre

hildegarde.vandenhove@sckcen.be



STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

1

EU-NORM, Teddington, UK, 2-5 October 2017

#### Examples of industries affected by NORM

- Uranium mining and milling
- Phosphate industry
- Oil and gas
- Coal production and use
- Metal mining and extraction
- Mineral sands mining and extraction
- Water production and purification
- Geothermal power production
- Clay and ceramics
- Use of by-products

#### Properties of NORM waste: a myriad of cases Radiological aspects

- Different radionuclides of major concern
  - <sup>232</sup>Th series radionuclides (e.g. mineral sands)
  - <sup>226</sup>Ra in sludges and scales of oil and gas industry
  - <sup>238</sup>U and <sup>226</sup>Ra in sludges from P-industry
  - <sup>210</sup>Pb in dust from smelting in metal industry
- Variety in radionuclide concentrations
  - <sup>226</sup>Ra : 1 Bq/g in phosphogypsum sludge from P-industry 10<sup>6</sup> Bq/g in scales in tubing of petroleum industry
  - <sup>232</sup>Th : <0.1 Bq/g in phosphogypsum sludge</li>
     10<sup>3</sup> Bq/g in refractory bricks
- Element mobility
  - <sup>226</sup>Ra has higher availability in phosphogypsum sludge than in scales

#### Properties of NORM waste: a myriad of cases Physical forms and quantities

- Different physical forms
  - Waste water from oil and gas production, coal and uranium extraction
  - Sludge from P-fertilizer production, water treatment, metal processing, ...
  - Scales in oil industry, P-industry
  - Ashes and slag from metal processing, coal industry
  - Waste rock
  - Miscellaneous waste: filter cloth, filter parts, ...
- Large volumes with (relatively) low specific levels of radioactivity
  - Phosphogypsum sludge (160 Mt/a), Al red mud (65 Mt/a), U tailings (20 Mt/a, 1000 Mt legacy)
  - Waste water from industrial processes
- Small volumes containing high levels of specific radioactivity
  - Sludge from water treatment plants; scale from oil and gas tubings (20 to 400 t/a per well head) >  $10^3$  Bq/g

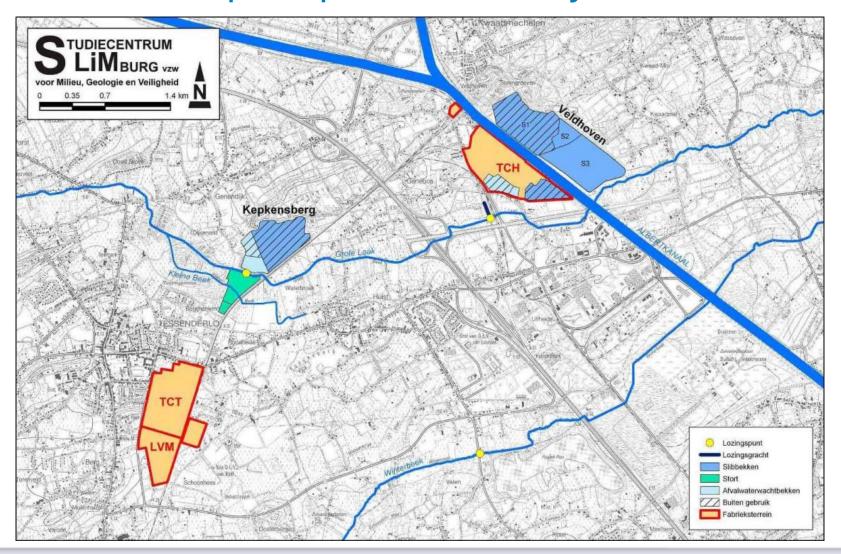
Properties of NORM waste: a myriad of cases Non-radioactive hazardous components

- Impacts of non-radiological contaminants as important or even more important than radiological impacts
- Heavy metals (HM), arsenic, toxic organics
  - Oil and gas
    Phosphate
    Iron and steel
    Hg, HM, hydrocarbons
    Cd, Zn, Pb, F, As
    Pb, Zn, Cr, Cd, Cu, As, Hg, Ni
- Non-radiological parameters drive the dispersion of radioactive contaminations
  - pH, sulphuric acid content, ground water head

## Important release mechanism for pollutants to the environment

#### During operation

- Dust emission and release of <sup>210</sup>Pb and <sup>210</sup>Po from stacks from smelters or furnaces
- Release of waste streams to river and sea
  - Sea dumping of radium scales in oil and gas industry
  - Sea or river dumping of CaCl<sub>2</sub> from P-industry
  - Routine releases of process water
- From tailings or from disposal sites in general
  - Erosion of the cover or embankments
  - Radon emanation
  - Dust
  - Structural failure of tailings embankments
  - Controlled release of contaminated water
  - Seepage
  - Unauthorised removal


#### General dose delivery pathways to humans

- Atmospheric pathways
  - Inhalation of radon and its daughters
  - Inhalation of radioactive particulates
  - External irradiation (gamma)
- Atmospheric and terrestrial pathways
  - Ingestion of contaminated foodstuffs
  - External irradiation

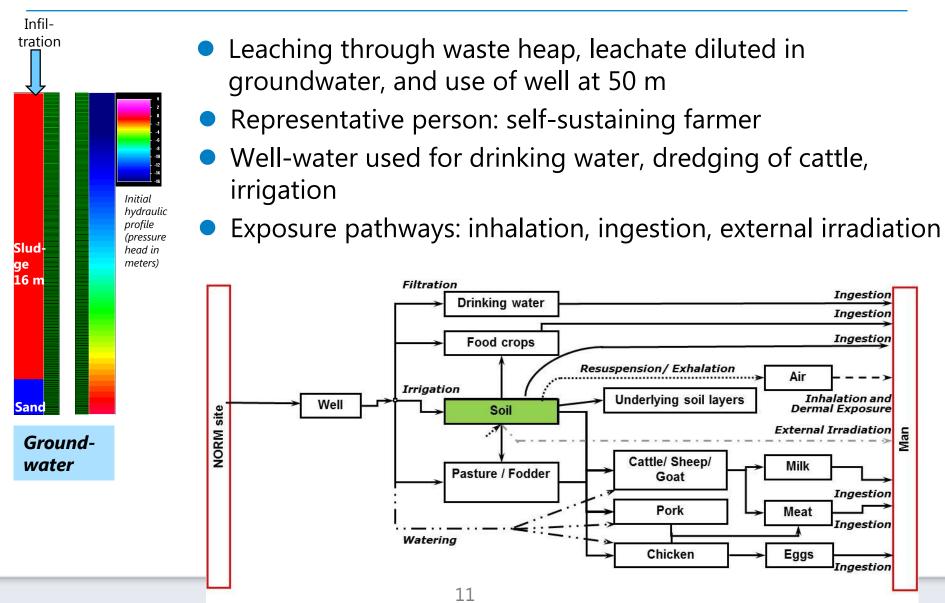
#### Aquatic pathways

- Ingestion of contaminated water
- Ingestion of foods produced using irrigation, fish and other aquatic biota
- External irradiation

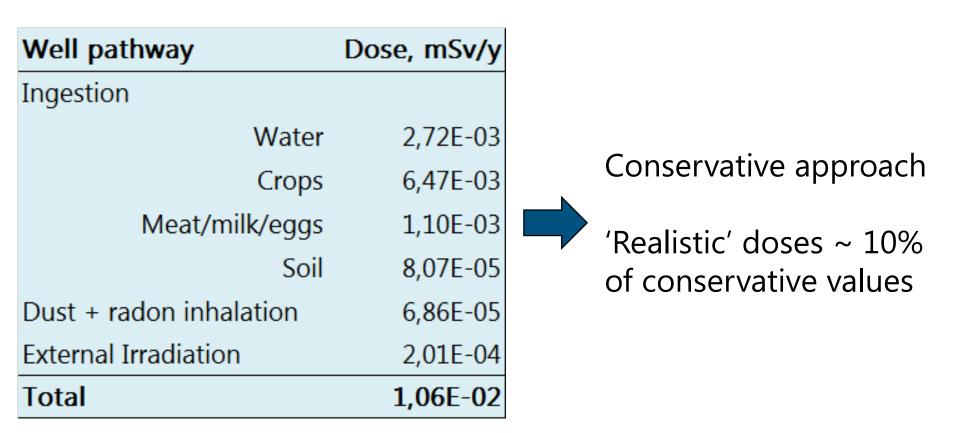
# Example: Tier 1 impact assessment for phosphate industry



#### NORM site Veldhoven


- <sup>226</sup>Ra in the phosphate ores: 1,2-1,5 Bq /g
- Dissolution with HCl resulted in dicalcium phosphates,  $CaF_2$  sludge and  $CaCl_2$  in discharge water,  $CaSO_4$  scales
- Veldhoven CaF<sub>2</sub> sludge deposit
  - 9 Mm<sup>3</sup> uncovered sludge over 55 ha
  - <sup>238</sup>U, <sup>226</sup>Ra and daughters; <sup>226</sup>Ra 3.5 Bq/g
  - up to 2.5 µSv/h
  - up to ~ 500 Bq/m<sup>3</sup> radon




#### Radiological assessments

- Human impact assessment
  - Sludge heap
    - Well scenario
    - Residence (subsistance) scenario
  - River banks
    - Recreational scenario
    - Residence (subsistance) scenario
- Environmental impact assessment
  - River
  - River banks

#### Sludge heap Dose impact due to use of well water



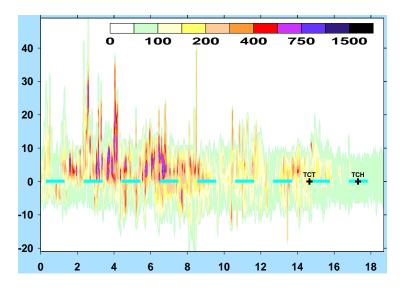
#### Sludge heap Well scenario



~100 % dose impact from <sup>238</sup>U

#### Disposal site Residence scenario, intrusion scenario

- No cover, people 100 % of time on site (1800 h/a outdoors, 7000 h/a indoors), cellar in waste
- Food grown on site
- U, Ra and daughters: 3,5 Bq/g
- Radon outside: 35 Bq/m<sup>3</sup>
   Radon inside: 1155 Bq/m<sup>3</sup>
- Very conservative


| Residence, waste heap | Dose, mSv/y     |  |  |  |  |
|-----------------------|-----------------|--|--|--|--|
| Ingestion             |                 |  |  |  |  |
| Crops                 | 2,53E+00        |  |  |  |  |
| Soil                  | 2,23E-01        |  |  |  |  |
| External Irradiation  |                 |  |  |  |  |
| Outdoors              | 1,57E+00        |  |  |  |  |
| Indoors               | 2,03E+00        |  |  |  |  |
| Dust inhalation       |                 |  |  |  |  |
| Outdoors              | 2,18E-03        |  |  |  |  |
| Indoors               | 2,65E-03        |  |  |  |  |
| Radon                 |                 |  |  |  |  |
| Outdoors              | 3,87E-01        |  |  |  |  |
| Indoors               | 3,45E+01        |  |  |  |  |
| Total                 | <b>4,12E+01</b> |  |  |  |  |

SCK • CFN

#### Contaminated river banks of Grote Laak

- Liquid discharges in Grote Laak resulted in contamination of riverbanks due to flooding
  - <sup>226</sup>Ra: 0.8 Bq/g
  - <sup>210</sup>Pb, <sup>210</sup>Po : 0.6 Bq/g (derived from <sup>226</sup>Ra levels considering <sup>222</sup>Rn exhalation)





#### Contaminated riverbanks Recreation and subsistance scenario

| Recreational scenario ( | 2h/d on river |  |  |  |  |
|-------------------------|---------------|--|--|--|--|
| Residence, banks Grote  |               |  |  |  |  |
| Laak                    | Dose, mSv/y   |  |  |  |  |
| Ingestion               |               |  |  |  |  |
| Crops                   | 5,85E-01      |  |  |  |  |
| Soil                    | 5,16E-02      |  |  |  |  |
| External Irradiation    |               |  |  |  |  |
| Outdoors                | 3,63E-01      |  |  |  |  |
| Indoors                 | 4,72E-01      |  |  |  |  |
| Dust inhalation         |               |  |  |  |  |
| Outdoors                | 5,06E-04      |  |  |  |  |
| Indoors                 | 6,15E-04      |  |  |  |  |
| Radon                   |               |  |  |  |  |
| Outdoors                | 8,96E-02      |  |  |  |  |
| Indoors                 | 9,58E-01      |  |  |  |  |
| Total                   | 2,52E+00      |  |  |  |  |

| Recreational, river  |             |
|----------------------|-------------|
| banks                | Dose, mSv/y |
| External Irradiation | 4,71E-02    |
| Inhalation           | 7,83E-05    |
| Radon                | 2,08E-02    |
| Total                | 6,80E-02    |

- Subsistance scenario (cfr scenario waste heap)
- Measured Rn indoors: 38 Bq/m<sup>3</sup>
   CalculatedRn outdoors: 7,3 Bq/m3

#### Impact on wildlife: Why look at it?

Paradigm contested: "If man is protected, the environment is protected"



 Over last decade, considerable international and national effort with environmental protection now being referred to in the IAEA Fundamental Safety Principles and Recommendations of the ICRP

#### Environmental risk assessment (ERA): Several steps **ERA** screening 1/ Problem 3/ Analyse of 2/ Analysis of 4/ Risk formulation effects characterisation exposure

 $RQ = \frac{PEDR}{PNEDR}$ 

Predicted environmental dose rate

Predicted no effect dose rate

PNEDR -PROTECT-ERICA Screening Value: 10 µGy/h

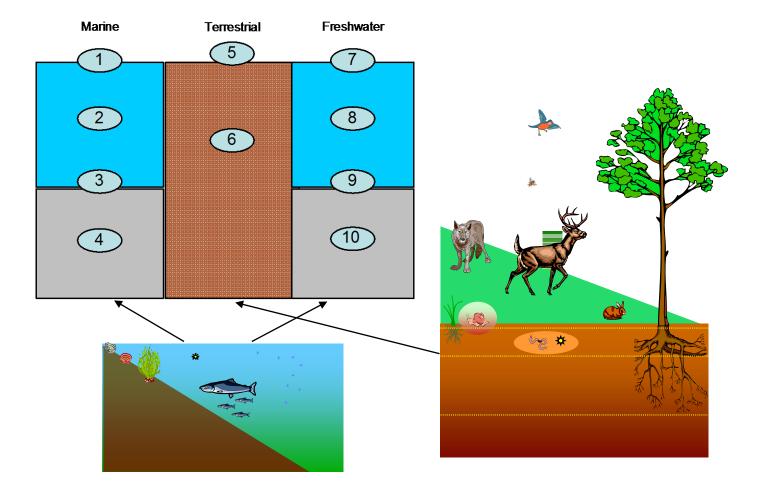
#### Tessenderlo Chemie – Grote Laak

#### TERRESTRIAL

#### **Concentrations (Bq kg<sup>-1</sup>) on right river border of Grote Laak**

|                                                     | <sup>226</sup> Ra | <sup>210</sup> Pb* | <sup>210</sup> Po* |
|-----------------------------------------------------|-------------------|--------------------|--------------------|
| Mean concentrations                                 | 811               | 649                | 649                |
| Mean concentration for soil sampled at highest dose |                   |                    |                    |
| rate locations                                      | 5,822             | 4,658              | 4,658              |

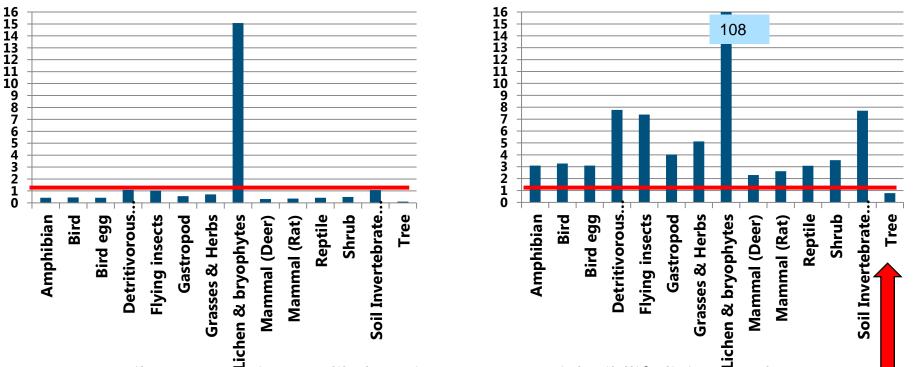
#### AQUATIC


### <sup>226</sup>Ra concentrations in river water (Bq L<sup>-1</sup>) and sediment (Bq kg<sup>-1</sup>) of Grote Laak

|            |         | 1998  |          | 1999  |          | 2000  |          | 2001  |          |
|------------|---------|-------|----------|-------|----------|-------|----------|-------|----------|
|            |         | Water | Sediment | Water | Sediment | Water | Sediment | Water | Sediment |
| Grote Laak | average | 0.14  | 818      | 0.18  | 528      | 0.21  | 475      | 0.13  | 327      |
|            | maxima  | 0.37  | 1,200    | 0.43  | 902      | 0.34  | 629      | 0.38  | 461      |

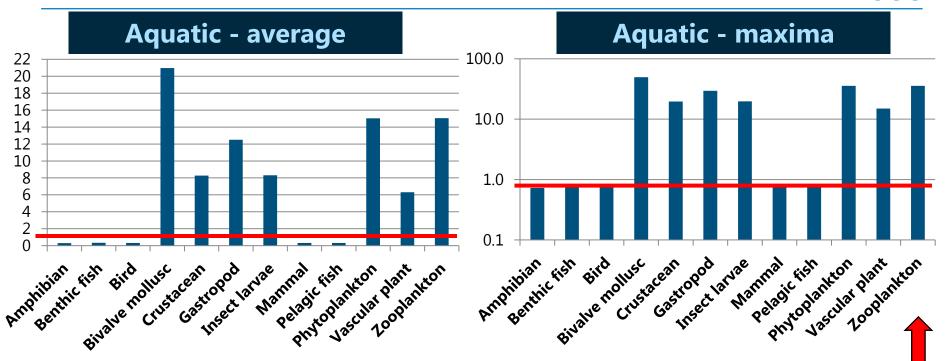
## ERICA reference organisms for terrestrial and aquatic environments

| Freshwater                    | Terrestrial                   |
|-------------------------------|-------------------------------|
| Amphibian (frog)              | Amphibian (frog)              |
| Benthic fish                  | Bird (duck)                   |
| Bird (duck)                   | Bird egg (duck egg)           |
| Bivalve mollusc               | Detritivorous invertebrate    |
| Crustacean                    | Flying insects (bee)          |
| Gastropod                     | Gastropod                     |
| Insect larvae                 | Grasses & herbs (wild grass)  |
| Mammal                        | Lichen & bryophytes           |
| Pelagic fish (salmonid/trout) | Mammal (rat, deer)            |
| Phytoplankton                 | Reptile                       |
| Vascular plant                | Shrub                         |
| Zooplankton                   | Soil invertebrate (earthworm) |
|                               | Tree (pine tree)              |


#### The ten ERICA habitats



#### RQ for Tessenderlo – Grote Laak riverbanks

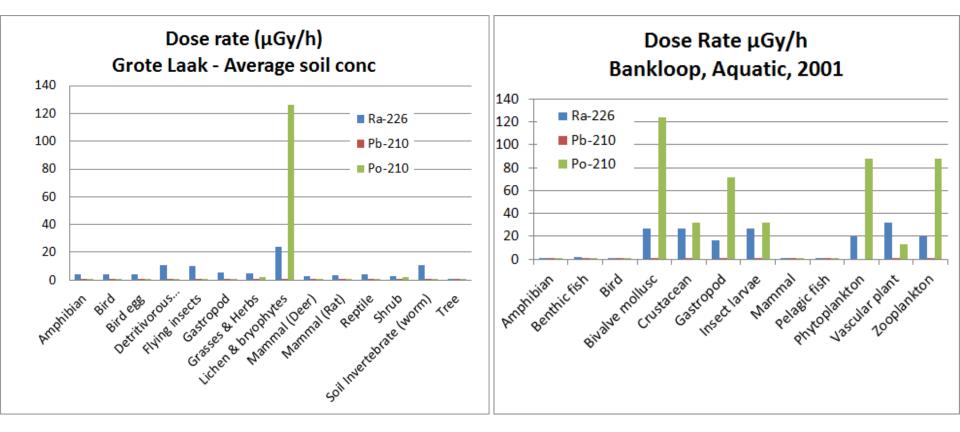

**Terrestrial – average hot spots** 

Terrestrial - average



- Average soil concentrations unlikely to impact terrestrial wildlife living on the riverbanks of Grote Laak
- No effects dose rates available for organism for which RQ>1
- Dose rates were almost entirely due to internal exposure
- However, for screening assessment conservative approach should be used ...

#### RQ for Tessenderlo Grote Laak - Aquatic 1999

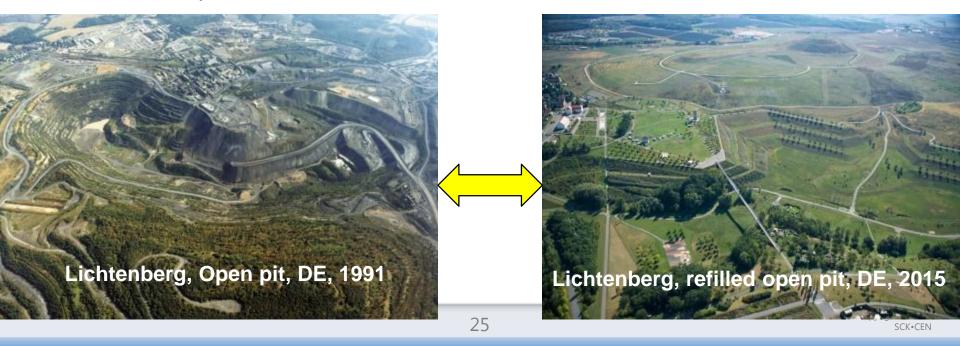



- At dose rates predicted for bivalve molluscs, crustaceans & gastropods, some effects observed
- For insect larvae, no effects observed up to a dose rate of 200 µGy h-1
- For all other organisms for which RQ>1, either no effects were observed for dose rates obtained or no effects data provided by ERICA
- However, for screening assessment conservative approach should be used ...

#### Dose contributing radionuclides

#### **Terrestrial - average**

#### Aquatic - average




#### Conclusions

- Screening ERA for some P-industry case studies show that
  - <sup>226</sup>Ra and <sup>210</sup>Po are the most important contributors do the dose
  - Dose rate is almost fully determined by internal dose rate
  - (past) Activities may lead to environmental contamination resulting in dose rates >PNEDR (RQ> 1)
  - Higher TIER ERA recommended for aquatic ecosystems of Tessenderlo

#### Long term impact

- Impact assessment of NORM liabilities  $\rightarrow$  tailored to the needs
- Not many dedicated studies on public exposure, though some exposure situations need critical evaluation of risk
- NORM is extremely long lived, impacts cannot only be considered in short term but must include the potential effects on future generations
  - Long-term impact assessment, stewardship, memory, long-term efficacy of remedial options

