

Development of a semi-empirical model for radiological assessment of workers involved in operation and maintenance of Oil & Gas plants

Dr. Luigi Del Moro

Dr. Edoardo Gorello

Dr. Luca Prestigiacomo

Dr. Egidio Mauro

Dr. Filippo Gagliardi

EU NORM Symposium 2017

London, 3rd October 2017

Summary

- Nucleco experience
- NORM in BSS (Basic Safety Standards)
- NORM in Oil & Gas industry
- On-Field operations
- MCNP dose assessment
- Conclusions

Business Overview

Health Physics & Radiological Radioactive Waste & Sources
Characterisation Management

- Chemical and Radiological Characterization
- Radiation Monitoring
- Health Physics and Radiation Protection
- Environmental impact assessment

- Radwaste Treatment and Conditioning
- Large Components
 Dismantling
- Temporary Storage
- Qualification and Process Development

Decommisioning & Site Remediation

- On-Site Dismantling and Decontamination
- Work Design and Supervision
- Remediation of Contaminated Sites
- Emergency planning

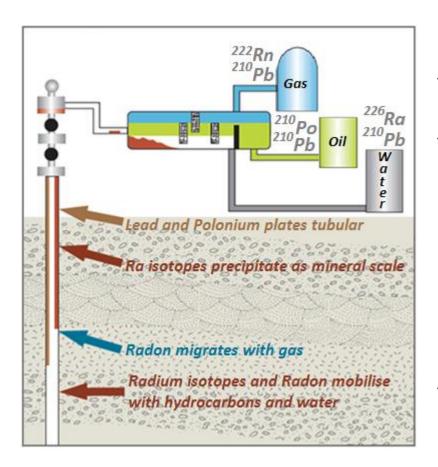
NORM in Basic Safety Standards

Scope of the EURATOM Directive 2013/59

- "This directive applies in particular to:
 - (c) human activities which involve the presence of <u>natural radiation sources</u> that lead to a significant increase in the exposure of workers or members of the public, in particular:
 - (ii) the processing of materials with naturally-occurring radionuclides."

Identification of practices involving Naturally-Occurring Radioactive Material

• "Member States shall ensure the <u>identification</u> of classes or types <u>of practice</u> involving Naturally—Occurring Radioactive Material [...]. Such identification shall be carried out by appropriate means taking into account <u>industrial sectors listed in Annex VI</u>."


Planned Exposure Situations

- "Exposure due to natural sources is, in general, considered an Existing Exposure Situation [...]. However, the relevant requirements in Sec. 3 for Planned Exposure Situations apply to:
 - (a) Exposure due to material in any practice [...] where the <u>activity concentration</u> in the material of any radionuclide in the $^{235}U/^{238}U/^{232}Th$ decay chain is greater than 1 Bq/g [...].

NORM in Oil & Gas Industry

Mobilization from Reservoir Rock

Radionuclide	Scale [Bq/g]	Sludge [Bq/g]	Nat. Gas [Bq/m³]	
²³⁸ U	0.001 - 0.5	0.005 - 0.01	-	
²²⁶ Ra	0.1 - 15 000	0.05 - 800	-	
²¹⁰ Po	0.02 - 1.5	0.004 - 160	0.002 - 0.08	
²¹⁰ Pb	0.02 - 75	0.1 - 1 300	0.005 - 0.02	
²²² Rn	-	-	5 - 200 000	
²³² Th	0.001-0.002	0.002 - 0.01	-	

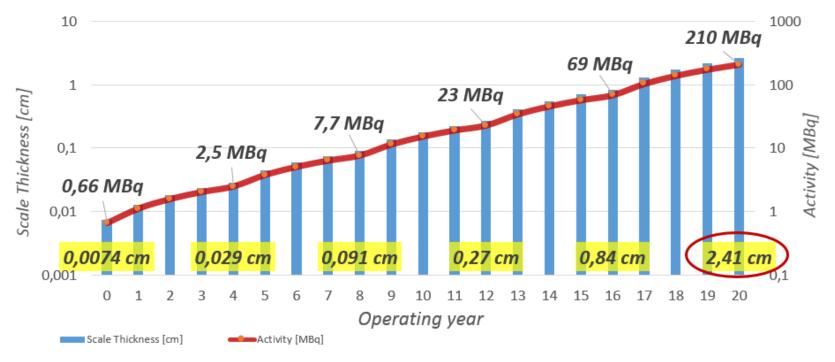
Oil & Water - Scale Prediction

Mixing of incompatible waters

Water	mg/l	Ba ²⁺	Ca ²⁺	Sr ²⁺	Ra ²⁺	SO ₄ ²⁻
Formation water	Min	20	700	170	5.4E-11	15
	Max	1 200	9 000	650	3.2E-5	140
Seawater	Min	-	200	-	-	2 700
	Max	< 0.2	450	10	-	3 400

Drop in temperature and pressure → Supersaturation → Precipitation

- Crystal growth rate
- Supersaturation degree
- Volumetric flow rate
- Water fraction trend


Radium co-precipitates with Barium Sulfate

Oil & Water - Scale Activity

Key assumptions for scale thickness and activity deposited

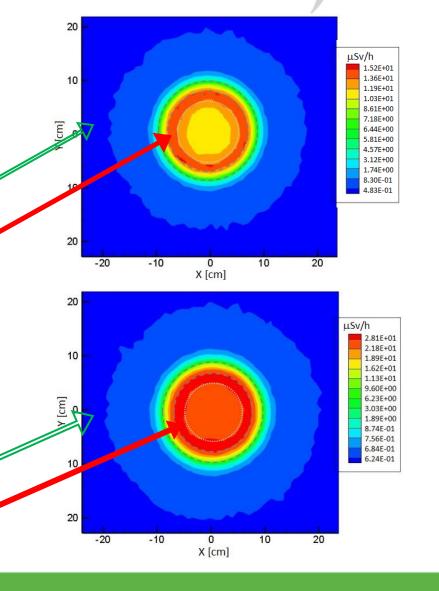
- 12 months of continuous operation starting each year from no thickness
- 1 meter height section of the 3 km depth extraction duct worst situation
- Constant flow rate and supersaturation degree
- Only BaSO₄ accumulates and causes radioactive scale 6350 Bq/g

Oil & Water - Effective Dose from Scale

Oil and Production Water flow

- 1 m² square area around the pipe
- Air surrounds external surface
- 50% water and 50% oil last year of operation
- 2.4 cm thickness of radioactive BaSO₄

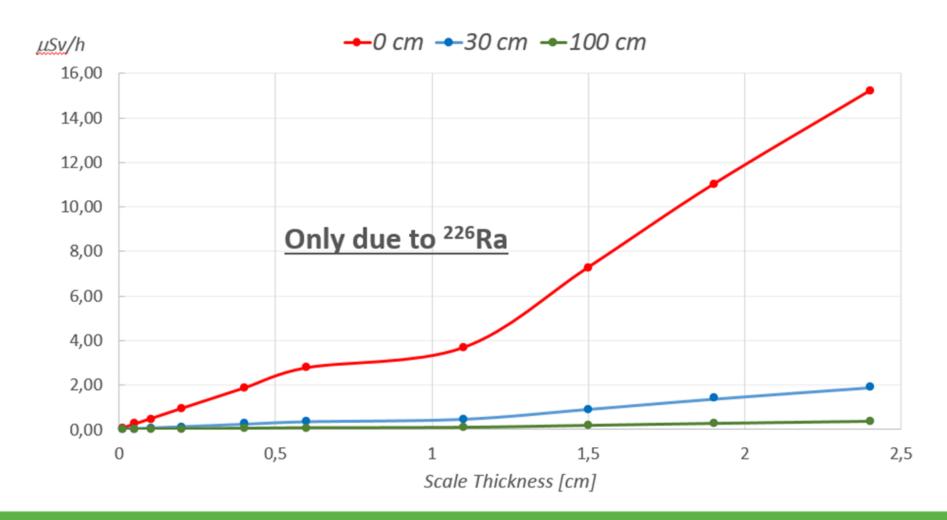
External dose: 0.48 μSv/h


Hot spot: 15.2 μ Sv/h

Pipe cleaning

- Empty pipe (air)
- External irradiation modeled
- No inhalation nor ingestion considered

External dose: 0.62 μSv/h


Hot spot: 28.1 μSv/h

Oil & Water - Effective Dose Trend

Intermediate values Oil-Water mixture

Gas Production – Storage Tanks

Storage conditions

- Two 30x3 m cylindrical storage tanks
- 16 bar pressurised liquid CO₂
- Phase-equilibrium temperature
- Semi-static flow

Physics parameters

- Particle size
- Particle and fluid density and velocity
- Drag force
- Turbulent diffusivity

Gas Production - Nucleco On-Field

Internal surface inspection

- 0.7 mm solid deposition on inner surface
- Sludge at the bottom of the tank.

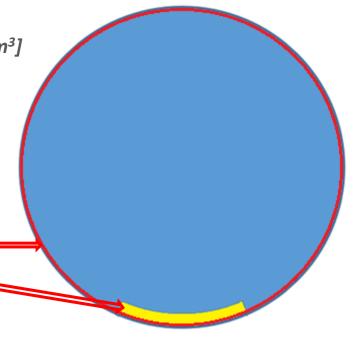
Radiation measurements

- ²¹⁰Pb contamination within thin film deposition 2540 Bq/g
- ²¹⁰Pb contamination in bottom tank sludge 196 Bq/g

Radiation protection & decontamination

- Radon and dose rate monitoring
- Mobile working station set up
- Inner surface scraping and clean up

Gas Production – MCNP Model


Nucleco Input Data

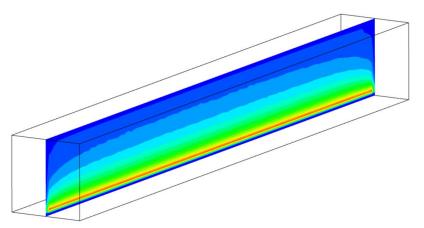
- Sludge activity concentration [Bq/g]
- Average matrix density [kg/m³]
- Volumetric source distribution based on On-Field data [m³] (contaminated volume)

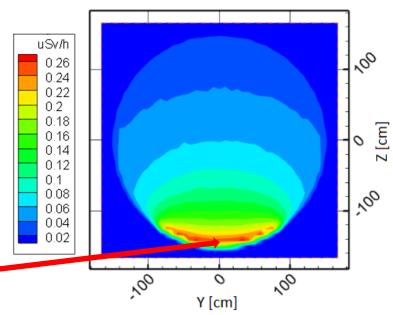
Estimated total activity: 180 MBq

MCNP Model

- Thin film contamination 3000 kg/m³
- Water and rust with ²¹⁰Pb on the bottom 2000 kg/m³
- Spherical configuration approximated to vertical walls

Gas Production – Estimated effective dose


MCNP Output - Key Assumptions


- 10 years of continuous operation
- 3 months stop before decontamination
- Air inside the tank during Nucleco operations
- No inhalation nor ingestion considered

MCNP Output - Comparison

- Vertical and horizontal dose range
- Effective dose to workers undetectable by adopted instruments
- Calculated dose comparable with environmental background ≈ 0.2 μSv/h

Hot spot: 0.26 μSv/h

Conclusions

On-Field data verification

- Data collected during On-Field operations are in agreement with bibliographical ones in terms of:
 - √ Activity concentration¹
 - ✓ Effective dose²

Data consistency → Radiation protection

- In Oil-Water case study the activity concentration as well as the effective dose calculated are at least an order of magnitude higher than the environmental background, resulting in a radiation protection issue
- In Gas Production the computed values are comparable with background and not negligible

^{1) &}quot;IAEA SRS N° 34, "Radiation protection and the management of radioactive waste in oil and gas industry" - 2003"

²⁾ Hamlat, Djeffal, Kadi "Assessment of radiation exposure from naturally occurring radioactive materials in the oil and gas industry" - 2001

ITALIAN SKILLS WORLDWIDE SAFETY

www.nucleco.it/en

https://it.linkedin.com/company/nucleco-spa