Naturally occurring radionuclides at a geothermal facility in the North German Bassin

Jörg Dilling¹, Jürgen Mielcarek¹, Simona Regenspurg², Uwe-Karsten Schkade¹

¹Federal Office for Radiation Protection, Germany ²Helmholtz Centre Potsdam, German Research Centre for Geosciences

II. EU-NORM Symposium, Prague, Czech Republic, 17th to 20th June 2014

Introduction

➔ Annex VI of EU-BSS - industrial sectors involving NORM

among others

- Geothermal energy production

- Distinction between deep (heat exchange) and close to surface facilities (heat pump)
- → The generation of NORM is strictly bound to a transfer of matter.

Using heat pumps or earth tubes for energy production only an exchange of heat occurs.

➔ From the geochemical point of view, a close look what happens at hydrothermal or petrothermal (Enhanced Geothermal System) facilities is necessary.

Radionuclides in deep thermal waters

| Verantwortung für Mensch und Umwelt | 🔳 📕 📕 📕 💻

Relevant radionuclides

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 🔳 🔳 🔳

Filter residues and scale

- ΔT , p \rightarrow mineral formation
 - → accumulation in plant equipment (scale)
 - → particles in fluid (need for filtering)

Groß Schönebeck site – operated by GFZ

Measurement program

Gamma-ray spectrometry

- Cuttings
- Filter residues
- Thermal water

In-situ measurements

- Ambient dose rate (ODL)
- Personal dosimetry
- TLD measurements

Filter residues I

| Verantwortung für Mensch und Umwelt | 🔳 📕 📕 📕 📕

Filter residues II

→ identical chemical process

→ different chemical processes

Filter residues III

- Transient till end of 2011
- → different flow regime
- → continuously clogging of bore hole
- → varying contribution of water supplying aquifers

Thermal waters (2009 – 2012), analysis with time delay

- → Spread over three orders of magnitude
- → C (²²⁴Ra, ²²⁸Th) depending on time delay between sampling and measurement

²²⁴Ra decays, ²²⁸Th growths in

Bundesamt für Strahlenschutz

| Verantwortung für Mensch und Umwelt | 🔳 📕 📕 📕 💻

Thermal waters (2014), analysis without time delay

→ ²²⁶Ra/²²⁸Ra differs in the two depths → different aquifers / host rock

- → ²²⁴Ra/²²⁸Ra in both depths is constant
- The activity concentration of Radium in brine must somehow fed by the host rock

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 🔳 🔳 🔳

Cuttings

Summary

Depending on the geochemical conditions in brines high specific activities of some 10 Bq/l for ²²⁶Ra, ²²⁸Ra and ²¹⁰Pb can occur. A key factor seems to be a high chloride concentration leading to soluble chloro-complexes.

Due to thermodynamically changes in temperature and / or pressure, high salinities favour the mineral formation of laurionite and Rabearing barite. Consequently NORM occurs more frequent in geothermal facilities using high saline waters.

A detailed interpretation of analytical data lead to the detection of flow disturbances and, quite surprisingly, of a disequilibrium in the Uran-Radium series in sandstone formations.

Thank you for your attention!

