Good and bad practices of decommissioning in the phosphate industry

S. Pepin, G. Biermans, B. Dehandschutter, A. Poffijn, M. Sonck (Federal Agency for Nuclear Control, Belgium)

EU NORM 2 Symposium, June 17 – 19, 2014 - Prague

Overview

- Contaminations in phosphate processing facilities;
- NORM regulations in Belgium;
- Decommissioning: "the good, the bad and the ugly"
- ⇒"wild" versus planned decommissioning;
- Liabilities;
- Conclusions;

NORM in phosphate industry

Comprehensive review in IAEA <u>Safety Report 78</u> "Radiation Protection and Management of NORM residues in the phosphate industry"

Sedimentary phosphate rocks: typical activity concentration 1 – 4 Bq/g U-238sec

Processing:

Sulfuric acid process

$$Ca_3(PO_4)_2 + 3H_2SO_4 \rightarrow 3CaSO_4 + 2H_3PO_4$$

Phosphogypsum phosphoric acid

Hydrochloric acid process

$$CaF_2.3[Ca_3(PO_4)_2] + 12 HCl \rightarrow 3 Ca(H_2PO_4)_2 + 6 CaCl_2 + CaF_2$$

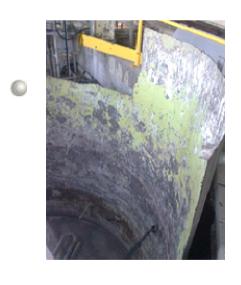
+ scalings in facilities

water discharge Sludge (solid waste)

Contaminations in phosphate processing facilities

First example: HCI process

	U-238	Ra-226	Pb-210	Po-210
	(Bq/g)			
Scales on external	5.6	1.12	2.6	2.5
side of reactor vessel				
Scale in decanter	10.7	136	70	94
Scale in washing decanter	3.4	780	240	159
Incrustation in gutter	240	1.12	18	21
Scale precipitation cones	1.26	0.25	3.6	11


Contaminations in phosphate processing facilities

Second example: former ammonium phosphate production

$$H_3PO_4 + NH_3 \rightarrow NH_4 H_2PO_4 (MAP)$$

Sulfuric acid process: uranium follows H₃PO₄

⇒ Uranium scales

Nuclide	Activity concentration (Bq/g)	
U-238	228	
Th-230	23	
Ra-226	0.14	
Th-232	0.81	

- ⇒ low gamma dose-rate!
- ⇒ Use the right measuring instrument

One tank ~5 kg scales => ~50 g U

NORM regulations in Belgium

NORM work activities (e.g. phosphate industry) submitted to declaration

- ⇒ Impact workers + population must be < 1 mSv/a
- if not, corrective measures or licensing
- ⇒ New assessment if "significant changes" in production processes
 - ⇒ Specific assessment for decommissioning

HCI process:

⇒ end of phosphate production in december 2013

Planned decommissioning (managed as a project within the company)

Declaration submitted to FANC including:

- Descriptions of the installations to be cleaned-up /dismantled;
- Radiological measurements (dose-rate + activity concentration of representative samples);
- Work protocol incl. protection measures for workers;
- Proposal for disposal of residues;
- Planning of operations;

Regular meetings between FANC and operator

FANC <u>authorised</u> decommissioning activities:

- follow-up <u>external doses</u> of workers (time-registration during work operations + dose-badge) + protection against inhalation/ingestion;
- Phasing of activities (1st: removal of sludge 2nd: removal of scales);
- Waste <u>register</u>;
- Monitoring <u>releases</u> (waste water);
- ⇒ <u>Sludge</u> from decommissioning to be disposed on sludge basin used for production sludge (condition: similar radiological characteristics as production sludge);
- ⇒ **Scales**: to be decided based on evaluation of waste outlets;
- ⇒ Other materials: to be decided case by case keeping in mind Lansink principle

Former <u>ammonium phosphate building</u> (part of a larger complex) Intricate juridical context (<u>bankruptcy</u> of successive operators)

Decommissioning undertaken <u>without declaration</u> to FANC <u>No prior characterization</u>

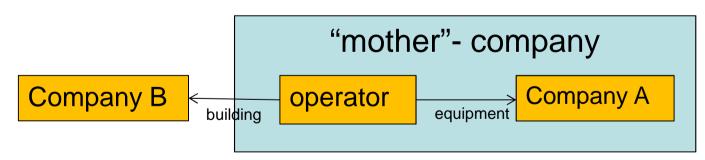
Various subcontractors – not informed about radiological aspects

One phosphoric acid tank exported to a scrap yard in the Nederland

- \Rightarrow alarm of portal monitor
- ⇒ U contaminated scales
- ⇒ FANC inspection on site

Installations in devastated state:

Parts of equipements transfered to another location: spills of scalings on the ground;



Issue of <u>liabilities</u>
Operator of facility = "licensee"

Operator ammonium phosphate:

- ⇒Never submitted a declaration
- ⇒Went bankrupt during decommissioning

Operator ≠ owner of equipment (rented from company A) ≠ owner of building / ground (rented from company B)

Bankrupt operator without asset => who is liable?

Conclusions

- Significant contaminations in phosphate facilities with various nuclide vectors
- ⇒ Prior characterization (use the right instrument! + knowledge of the processes)
- Planned versus <u>unplanned</u> decommissioning
- <u>Dialogue</u> needed between operator and authorities (but also enforcement policy)
- Identify responsibilities / <u>liabilities</u> financial aspects
- ⇒ Think about decommissioning <u>already during the</u> <u>production phase</u>

