

An analytical method to determine activity concentrations of uraniumand thorium-series in the inhaled air during arc welding

M. Herranz, <u>S. Rozas</u>, R. Idoeta, N. Alegría and F. Legarda

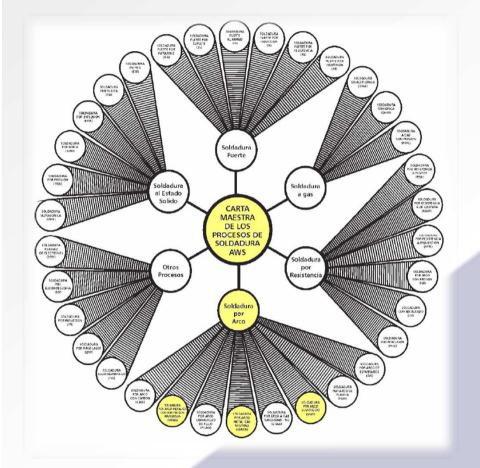
Department of Nuclear and Fluid Mechanics, University of the Basque Country, Spain

EU – NORM II INTERNATIONAL SYMPOSIUM

Prague, 2014

Universidad del País Vasco

Euskal Herriko Unibertsitatea



- 1. Introduction
- 2. Materials and methods
- 3. Results
- 4. Conclusions

Universidad del País Vasco

Euskal Herriko Unibertsitatea **Introduction** – Materials and methods – Results – Conclusions

Welding processes according to AWS

Arc welding

> Arc

- Electric current set up in air or gas between two conductor pieces
- Processes using consumables
 - ✓ SMAW → Covered electrode
 - ✓ GMAW → Wire
 - ✓ FCAW → Flux cored wire
 - $\checkmark \mathsf{SAW} \to \mathsf{Flux}$

70% rod **SMAW** Electrodes Covered 30% covering **GMAW** and Slag Solid **SAW** CONSUMABLES Wire 85% metal wire **FCAW** Flux cored 15% flux Flux SAW Slag

Unibertsitatea

Universidad del País Vasco

Rutile

- Most used consumable type
- Mineral from group IV (oxides and hydroxides)
- ✓ 85 95% TiO₂
- ✓ 0,1 1,1 Bq g⁻¹ of ²³⁸U
- ✓ 0,07 0,45 Bq g⁻¹ of ²³²Th

Hypotheses

- During SMAW and FCAW processes aerosols and particles are sent into the air and inhaled, and slag is produced
- Aerosols and particles contain radionuclides, which could be concentrated in filters and inhaled

Objectives

- To develop an analytical method to determine activity concentrations in the inhaled air
- > To assess effective dose, via inhalation

Universidad E del País Vasco L

idad Euskal Herriko asco Unibertsitatea

2. Materials and methods

2.1. Sampling

- 2.1.1. Aerosols and particles
 - During SMAW and FCAW processes
 - ✓ By an active air-sampling device:
 - Filter: fibreglass
 - Air flow rate: 60 l min⁻¹
 - In an industrial facility with air extraction switched off

2.1.2. Slag

After SMAW process

Universidad Euskal Herriko del País Vasco Unibertsitatea

2. Materials and methods

2.2. Measurement

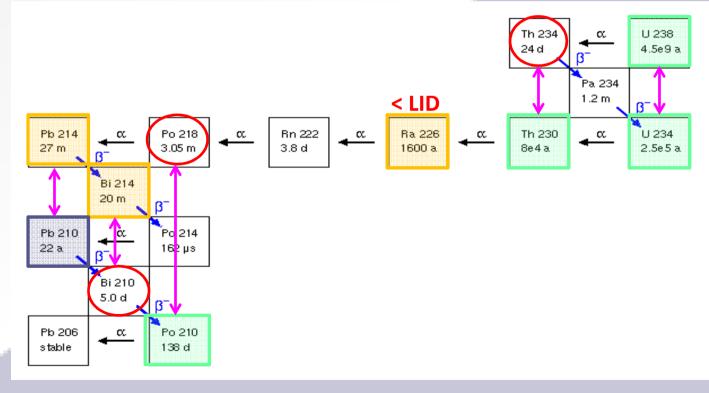
2.2.1. Fibreglass filters

- ✓ Gamma-ray spectrometry
 - Immediate and sequential 1200 s measurements
 - To determine AC of unsupported radon daughters
- U, Th, Ra, Pb and Po isolation

Alpha and gamma spectrometry and beta counting

Alpha	PIPS detector	²³⁸ U, ²³⁴ U, ²³² Th, ²³⁰ Th, ²²⁸ Th and ²¹⁰ Po
Gamma	HPGe detector	²²⁶ Ra
Beta	Gas flow proportional detector	²¹⁰ Pb

2.2.2. Slag


Gamma-ray spectrometry

- After sampling
- Again, after being milled

2.3. Activity concentration determination, uranium-series

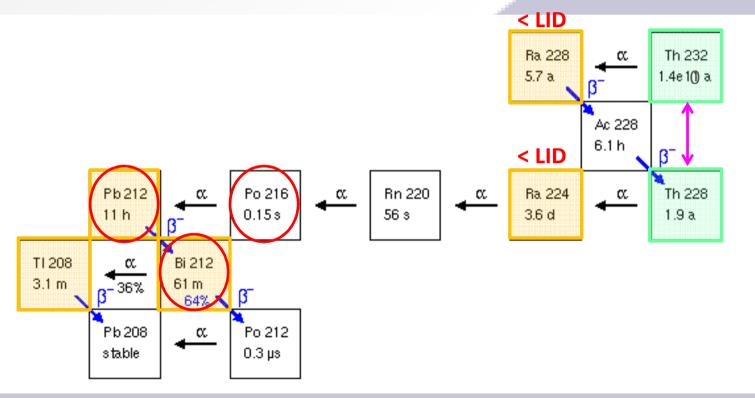
- Temperature and chemical reactions affect elements differently
- Ratio between AC of U- and Th-series in consumables persists in each element in air
- AC in the inhaled air is constant during arc welding

Universidad Euskal Herriko del País Vasco Unibertsitatea

2.3.1. Equations for uranium-series

Radionuclide	Sampling	Decay
U 238	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{y 238} N_{U 238}$	$\frac{dN}{dt} = -\lambda_{U 238} N_{U 238} \sim 0$
Th 234	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{y 238} N_{U 238} - \lambda N$	$\frac{dN}{dt} = \lambda_{U 238} N_{U 238} - \lambda N \sim 0$
U 234	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Pa,234}N_{Pa,234} - \lambda N$	$\frac{dN}{dt} = \lambda_{Fa234} N_{Fa234} - \lambda N \sim 0$
Th 230	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{U234}N_{U234} - \lambda N$	$\frac{dN}{dt} = \lambda_{U 234} N_{U 234} - \lambda N \sim 0$
Po 218	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Rn222}N_{Rn222} - \lambda N$	$\frac{dN}{dt} = \lambda_{Rn \ 222} N_{Rn \ 222} - \lambda N$
Pb 214	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Po\ 21B}N_{Po\ 21B} - \lambda N$	$\frac{dN}{dt} = \lambda_{Fo\ 218} N_{Po\ 218} - \lambda N$
Bi 214	$\frac{dN}{d\iota} = \frac{n}{V}q - \lambda_{Pb\ 214}N_{Pb\ 214} - \lambda N$	$\frac{dN}{dt} = \lambda_{Fb\ 214} N_{Pb\ 214} - \lambda N$
Pb 210	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Bl\ 214}N_{Bl\ 214} - \lambda N$	$\frac{dN}{dt} = \lambda_{Bt\ 214} N_{Bt\ 214} - \lambda N$
Bi 210	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Pb210}N_{Pb210} - \lambda N$	$\frac{dN}{dt} = \lambda_{Fb 210} N_{Pb 210} - \lambda N \sim 0$
Po 210	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Bi210}N_{Bi210} - \lambda N$	$\frac{dN}{dt} = \lambda_{Bi\ 210} N_{Bi\ 210} - \lambda N \sim 0$

Counting rate =
$$\frac{\int_{0}^{t} \lambda_{i} N_{i}(t) dt \cdot \gamma_{\varepsilon,i} \cdot Efficiency}{t}$$


Prague, 17-19 June 2014

EU – NORM II INTERNATIONAL SYMPOSIUM

2.3. Activity concentration determination, thorium-series

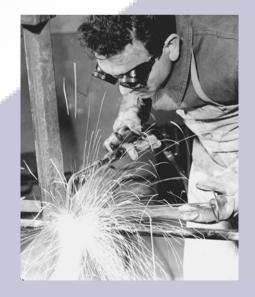
- Temperature and chemical reactions affect elements differently
- Ratio between AC of U- and Th-series in consumables persists in each element in air
- AC in the inhaled air is constant during arc welding

Universidad Euskal Herriko del País Vasco Unibertsitatea

2.3.2. Equations for thorium-series

Radionucleide	Sampling	Decay	
Th 232	$\frac{dN}{dt} = \frac{n}{V}q - \lambda_{Th232}N_{Th232}$	$\frac{dN}{dt} = -\lambda_{Th\ 232} N_{Th\ 232} \sim 0$	
Th 228	$\frac{dN}{dt} = \frac{n}{V}q + \lambda_{AC228}N_{AC228} - \lambda N$	$\frac{dN}{dt} = \lambda_{Ac\ 228} N_{Ac\ 228} - \lambda N \sim 0$	
Po 216	$\frac{dN}{dt} = \frac{n}{V}q + \lambda_{Rn220}N_{Rn220} - \lambda N$	$\frac{dN}{dt} = \lambda_{Rn \ 220} N_{Rn \ 220} - \lambda N$	
Pb 212	$\frac{dN}{dt} = \frac{n}{V}q + \lambda_{Po\ 216}N_{Po\ 216} - \lambda N$	$\frac{dN}{dt} = \lambda_{Po\ 216} N_{Po\ 216} - \lambda N$	
Bi 212	$\frac{dN}{dt} = \frac{n}{V}q + \lambda_{Pb\ 212}N_{Pb\ 212} - \lambda N$	$\frac{dN}{dt} = \lambda_{Pb\ 212} N_{Pb\ 212} - \lambda N$	
TI 208	$\frac{dN}{dt} = \frac{n}{V}q + \lambda_{Bi212}N_{Bi212} - \lambda N$	$\frac{dN}{dt} = \lambda_{Bi\ 212} N_{Bi\ 212} - \lambda N$	

Counting rate =
$$\frac{\int_0^t \lambda_i N_i(t) dt \cdot \gamma_{\varepsilon,i} \cdot Efficiency}{t}$$



2. Materials and methods

2.1. *Effective internal dose assessment*

 Committed effective dose coefficients e(50) from DCAL for slow lung absorption and 5 μm AMAD

$$E(50) = \sum_{i} a_{i} \cdot e(50)_{i,inh} \cdot Q \cdot t$$

3.1. Activity concentration in the inhaled air

✓ SMAW using rutile-covered electrodes

		U-series		Act. Conc. (<i>Bq m⁻³</i>)	u, k = 1 (<i>Bq m</i> -3)	Th-s	eries	Act. Conc. (<i>Bq m⁻³</i>)	u, k = 1 (<i>Bq m</i> -3)
_		αM	²³⁸ U	1.36E-03	9.39E-05	αM	²³² Th	4.89E-04	5.18E-05
		Eq.	²³⁴ Th	1.35E-03	8.80E-05	Eq.	²²⁸ Ra	-	
7		-	²³⁴ Pa	-		γM	²²⁸ Ac	-	
		αM	²³⁴ U	1.74E-03	1.09E-04	αM	²²⁸ Th	5.29E-04	5.46E-05
		αM	²³⁰ Th	1.35E-03	8.80E-05	γM	²²⁴ Ra	-	
		γM	²²⁶ Ra	-		-	²²⁰ Rn	-	
		-	²²² Rn	-	x 0.4	Eq.	21670	1.19E-02	5.38E-04
		Eq.	²¹⁸ Po	3.03E-02	1 375-03	Eq.	²¹² Pb	1.03E-02	9.65E-04
		C, Eq.	²¹⁴ Pb	2.64E-02	2.48E-03	Eq.	²¹² Bi	1.04E-02	
		С	²¹⁴ Bi	2.66E-02		С	²⁰⁸ TI	1.12E-02	
		βΜ	²¹⁰ Pb	2.64E-02	2.48E-03				
	1	C, Eq.	²¹⁰ Bi	2.66E-02					
		αM	²¹⁰ Po	3.03E-02	1.37E-03				

x 17

3.1. Activity concentration in the inhaled air

✓ FCAW using rutile flux cored wire

		U-series		Act. Conc. (<i>Bq m⁻³</i>)	u, k = 1 (<i>Bq m</i> -3)	Th-s	eries	Act. Conc. (<i>Bq m⁻³</i>)	u, k = 1 (<i>Bq m</i> -3)
		αM	²³⁸ U	9.42E-04	8.86E-05	αΜ	²³² Th	3.08E-04	2.90E-05
_		Eq.	²³⁴ Th	9.75E-04	2.44E-04	Eq.	²²⁸ Ra	-	
		-	²³⁴ Pa	-		γM	²²⁸ Ac	-	
		αM	²³⁴ U	9.33E-04	8.08E-05	αM	²²⁸ Th	3.08E-04	2.90E-05
_		αM	²³⁰ Th	9.75E-04	2.44E-04	γM	²²⁴ Ra	-	
ر ا ر		γM	²²⁶ Ra	-		-	²²⁰ Rn	-	
		-	²²² Rn	-	x 0,3	Eq.	216 PO	4.04E-03	2.85E-04
		Eq.	²¹⁸ Po	1.28E-02	8 395-04	Eq.	²¹² Pb	4.92E-03	7.51E-04
		C, Eq.	²¹⁴ Pb	1.56E-02	2.38E-03	Eq.	²¹² Bi	4.96E-03	
		С	²¹⁴ Bi	1.57E-02		С	²⁰⁸ TI	4.64E-03	
		βм	²¹⁰ Pb	1.56E-02	2.38E-03				
	1	C, Eq.	²¹⁰ Bi	1.57E-02					
		αM	²¹⁰ Po	1.28E-02	8.30E-04				

x 15

Universidad Euskal Herriko del País Vasco Unibertsitatea

3.2. Activity concentration in slag

Radionuclide	Activity <i>(Bq kg⁻¹)</i>	Uncertainty (Bq kg ⁻¹)	
²²⁸ Ra (via ²²⁸ Ac)	63.7	6.97	
²²⁸ Th (via ²²⁴ Ra)	65.2	16.8	
²³⁸ U (via ²³⁴ Th)	110	13.0	
²²⁶ Ra (via ²¹⁴ Pb)	91.6	22.2	
²¹⁰ Pb	12.3	6.44	
²³⁵ U	9.75	2.73	
⁴⁰ K	1037	72.2	

Universidad del País Vasco

3.3. Effective dose

 \checkmark

Security Guide 11.3 published by CSN: 5 μ m and S

	Rutile-cover	ed electrodes	Rutile flux	x cored wire
Series	E(50) (μSv h⁻¹)	Uncertainty (μSv h⁻¹)	E(50) (μSv h ⁻¹)	Uncertainty (μSv h⁻¹)
Uranium	0.469	0.023	0.254	0.022
Thorium	0.036	0.003	0.038	0.002
Total	0.538	0.023	0.325	0.022

E(50) to 1700 h yr⁻¹ → **0.91 mSv yr⁻¹** < 1 mSv yr⁻¹ \checkmark

- The developed analytical method allows to determine activity concentration in the inhaled air from:
 - ✓ ²¹⁴Pb and ²¹⁴Bi early gamma-ray measurements
 - ✓ 15 17 factor between isotopes before and after Rn
 - Ratio between U- and Th-series activities in consumables
- Long-lived nuclides before Rn and ⁴⁰K remain mainly in slag or bead
- 3. Internal dose, via inhalation is < 1 mSv yr⁻¹
- 4. The use of individual protective equipment is convenient

Universidad del País Vasco

Euskal Herriko Unibertsitatea

Thank you for your attention

Prague, 2014