

Performances of a lightweight collimated γ -ray spectrometer for in-situ surveys

G. Xhixha^{*}; M. Baldoncini; G. P. Bezzon; G. P. Buso; L. Carmignani I. Callegari; T. Colonna; E. Guastaldi; G. Fiorentini; F. Mantovani L. Mou; C. Robustini; C. Rossi Alvarez; V. Strati; M. Kaçeli Xhixha A. Zanon

* Legnaro National Laboratory, National Institute of Nuclear Physics (INFN), Via dell'Università, 2- 35020 Legnaro (PD), Italy
E-mail: xhixha@fe.infn.it
Tel: +39 3296965933
Web: www.lnl.infn.it

R&D at our laboratories

Environment Ad-hoc design, realization and testing of personalized instruments

Portable y-ray spectrometer designed and realized to work in different acquisition configurations on-field.

- Soil contamination
- **Orphan source ID**
- **Quarry survey**

Fully-automated y-ray spectrometer composed of two HPGe detectors, designed to measure up to 24 samples without human attendance.

Building material

lucTec/

...in lab

- **NORM** residues
- **Rock/soil baseline mapping**

Moduled airborne y-ray spectrometer composed of four Nal(TI) detectors, for a total volume of 16 Liters, ideal for large scale surveys **Mineral exploration**

- **Emergency response**
- **Precision agriculture**

http://fst.unife.it/ricerca/laboratori-1/laboratorio radioattivita

y-ray Thermal IR NIR VIS

in situ

Scientific, technological & social motivations Desired features for a customized instrument X External perturbations In-situ accurate identification and guantification of radionuclides Portable lightweight collimated instrument • Quick response measurement on few cm² field of view **Standard instrument Applications:** Homeland security Environmental monitoring **Geophysical prospection** Quarry survey X Radioactive source identification Spatial X Radiological variation due to characterization contamination CAMPOLONGHL 200 m Geochemical study

NORM4BUILDING COST TU1301

http://www.cost.eu/domains_actions/tud/Actions/TU1301

Cava-rad system: design

Physical parameters

- Dimensions (L 43.0 cm x H 27.0 cm x W 13.5 cm)
- Weight 8.0 kg

Environmental parameters

- Temperature -10 to +50 °C
- Humidity 85%

Detector

Gamma-ray detector

• NaI(Tl) scintillation detector of 0.3 L volume

Energy resolution

- 7.3 % at 662 keV (¹³⁷Cs)
- 5.2 % at 1172 and 1332 keV (⁶⁰Co)

Physical parameters

- Dimensions (L 7.62 cm x H 7.62 cm x W 7.62 cm)
- Weight ~2 kg

Collimator

Collimation configuration

• Lead-plate method

Physical parameters

- Dimensions (L 9.0 cm x H 9.0 cm x W 3.0 cm)
- Weight ~3 kg

Cava-rad system: operation

Typical cava-rad spectra

Calibration process: flowchart scheme

IAEA-TECDOC-1363, July 2003

Calibration 'natural pads'

The radioactivity content of calibration "natural sites" used for calibration of Cava_Rad is measured in laboratory by using HPGe detectors.

		⁴⁰ Κ±σ (%)	²³⁸ U ± σ (μg/g)	²³² Th±σ (μg/g)	¹³⁷ Cs ± σ (Bq/kg)	Th/U	K/U × 10 ³
20 samples	К2	6.0 ± 0.1	4.9 ± 0.2	27.9 ± 1.1	10.2 ± 1.1	5.5	1.2
	К4	2.8 ± 0.1	2.5 ± 0.3	13.4 ± 0.8	6.5 ± 0.8	5.4	1.1
	U1	< 0.04	7.4 ± 0.2	<1.0	2.0 ± 0.6	-	-
Vicenza	U3	0.05 ± 0.01	7.5 ± 0.2	<1.0	< 1.4	-	0.00 6
Padova High2	Th1	2.1 ± 0.1	0.9 ± 0.1	4.2 ± 0.6	< 1.6	4.7	2.3
Background: K2 • Internal BG,	Th	2.3 ± 0.1	25.6 ± 0.5	360.7 ± 3.3	< 3.2	14.1	0.08
Cosmic radiatio Atmospheric ra	idon. _{Cs1}	0.5 ± 0.1	1.2 ± 0.2	< 3.9	1496 ± 13	-	0.4
	H1	4.2 ± 0.1	12.3 ± 0.3	55.9 ± 1.5	< 2.8	4.6	0.3
Ferrara	H2	4.1 ± 0.1	8.0 ± 0.2	36.8 ± 1.3	< 2.6	4.6	0.5
Ge	Bckg1	n/a	n/a	n/a	n/a	-	-

Windows Analysis vs. Full Spectrum Analysis

6 - C 1

1000

A 40 - 7

- 10 - H

A. 255 - A

18

10.00 The count rates registered in the K, eU and 100 eTh energetic windows are linearly related to 1000 the corresponding concentration in the pad. 100

 $N = S \cdot C$

N – column vector of background corrected count rates;

S – 3 x 3 matrix of sensitivities;

C – column vector of concentrations.

This method includes the estimation of: Background radiation, Stripping ratios, and

Sensitivity constants

3.360 0.250 0.062 $S_{IAFA}^{1} =$ 0.325 0.075 0.0000.000 0.011 0.128 IAEA-TECDOC-1363, July 2003

The FSA reconstructs the total spectrum as a linear combination of standard spectra (K, eU, eTh, Cs) with weights equal to the corresponding isotope concentration, plus a background spectrum

A. Caciolli et al. 2012. Science of the Total Environment 414:639-645

Fundamendal spectra

Validation of the results: sites description

Monti Vulsini (south Tuscany) Deposits of different pyroclastic rocks due to volcanic activity (~300.000 years ago).

Euganean Hills (Veneto) Homogeneous outcrops of acid effusive rocks.

In-situ:PbOut and PbIn measurementsAcquisition time: 5 or 10 minutes

In-laboratory:

•Sample collection, under the detector •Analysis in laboratory (MCA_Rad)

Validation of the results: cava-rad results

Correlation between laboratory and in situ results

Conclusions & Perspectives

Ministero dello Sviluppo Economico Ufficio Italiano Brevetti e Marchi

RM2012A000180

- The Cava-rad sytem was **designed and realized** aiming at optimizing weights, acquisition time and counting statistics;
 - Technological improvements are foreseen:
 GammaSTREAM All-in-one digital MCA tube base for gamma spectrometry.

- *Wireless connection* to Tablet & Smartphone for spectrum analysis.

- The *calibration* was performed based on FSA-NNLS method and standard spectra of K, U, Th, Cs and Bckg were obtained.
 - Improvements are expected by:
 - Increasing *counting statistics* and
 - Construction of *calibration pads* facility.
- In-situ and laboratory measurements are *compatible at 1o level* (counting uncertainty of ~20%) and the instrument is *sensitive to the spatial variability* of radioactivity content.

CAEN CONSTITUTE

for your attention...