

Preliminary screening assessment of the potential impact of the phosphate industry on wildlife

H. Vandenhove & L. Sweeck Belgian Nuclear Research Centre Biosphere Impact Studies hvandenh@sckcen.be

Why look at impact on the environment?

Need for a system to protect environment

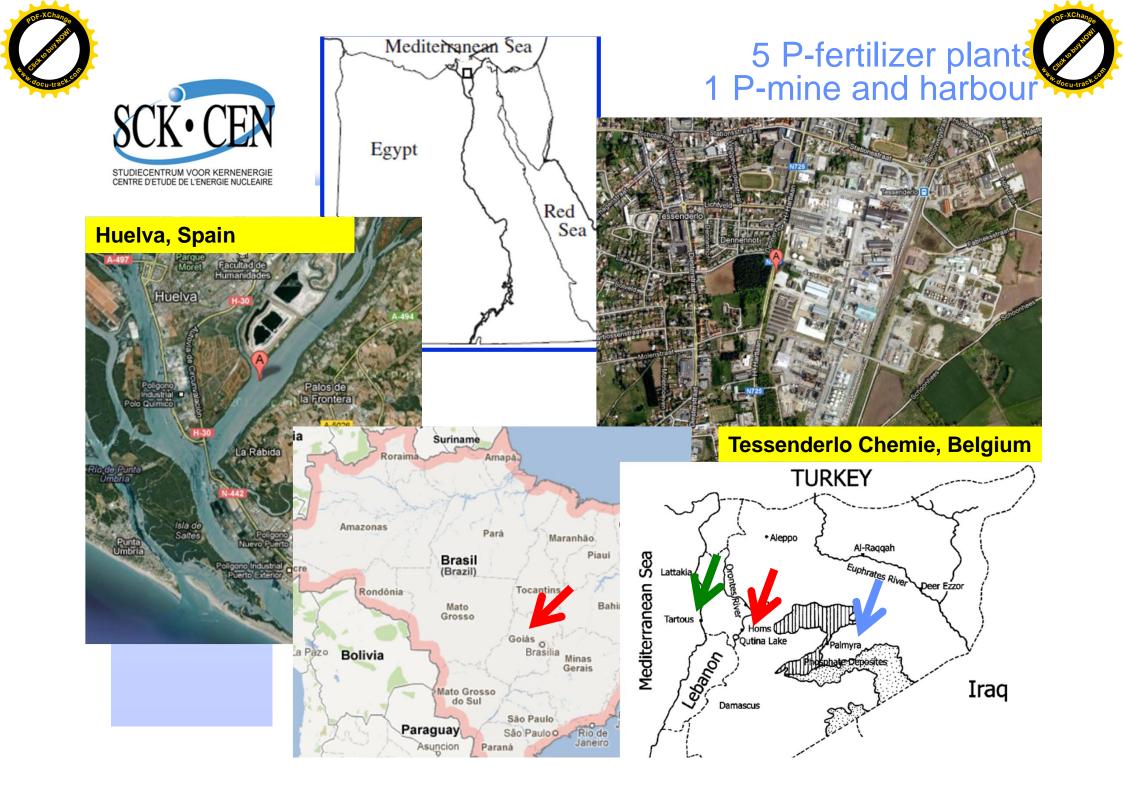
• Paradigm contested: "If man is protected, the environment is protected"

- Over last decade, considerable international and national effort with environmental protection now being referred to in the IAEA Fundamental Safety Principles and recommendations of the ICRP
- To date, focus has been on collating relevant information and developing approaches to enable regulatory assessments.
- 3 EU countries have legislation for radiation impact on environment England and Wales; Sweden and Finland

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRI

Environmental issues linked with the NORM industry in general or P-industry in particular

- Why look at the NORM industry?
 - Particular regulation? \rightarrow Generally No
 - Personal curiosity? → Yes
- Why P-industry?
 - Impact from P-industry for human radiological impact rather well studied → info on environmental concentrations likely to be available
- Question?
 - Would environmental concentrations reported in literature lead to a potential impact on reference fauna and flora


NORM in the P-industry


- Phosphate rocks contain relatively high concentrations of NORM from U and Th decay series
 - Moroccan P-ore: 1500-1700 Bq kg^{-1 238}U and ²²⁶Ra; 10-200 Bq kg^{-1 232}Th
- Phosphate ores particularly insoluble. 1st primary step in production process is acid leaching
 - 90% of cases ore treated with sulphuric acid
 - Most U and Th to fertilizers
 - For 1 t of phosphate, 3 t ore extracted and 4-5 t of phosphogypsum formed
 - ~80% of ²²⁶Ra, 30% of ²³²Th and 14% of ²³⁸U left in gypsum waste with a mean ²²⁶Ra content of 800-1250 Bq kg⁻¹.
 - If hydrochloric acid used to extract phosphate
 - Fertilizers and chemicals free from radioactivity
 - ²³⁸U precipitated by lime addition and build up with CaF₂ sludge
 - ²²⁶Ra released with liquid CaCl₂ liquid effluent

Environmental contamination linked with Pindustry

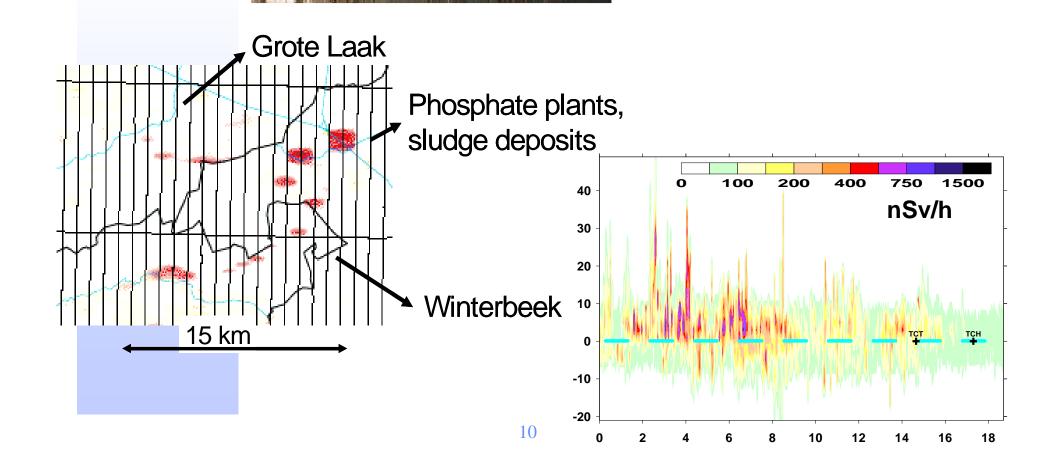
- Radon emanation and particulate air emissions from the mine areas, phosphogypsum piles, from phosphate ore storage and loading activities in harbours
- Leaching of radionuclides from ore in mining areas and phosphogypsum into groundwater
- Effluent discharges to rivers and marine environments
- \rightarrow Contamination of the surrounding environment.

Environmental concentrations (1)

- Soil, sediment and water concentrations collected from literature
- For soils and sediments in vicinity of P-mines or P-export platforms
 - secular equilibrium for ²³⁸U chain
 - for broken chains, equilibrium with most appropriate member
 - assuming 20 % loss due to ²²²Rn emanation, ²¹⁰Po and ²¹⁰Pb conc in soil and sediment 80 % of ²²⁶Ra conc
 - If no information available for ²³²Th chain, ²³²Th chain not considered
- Releases from phosphogypsum piles (H₂SO₄ wet process)
 - No equilibrium with parent for ²²⁶Ra since U mainly retained in fertilizers
- Releases in case of HCI wet process (Tessenderlo Chemie) to the aquatic environment
 - no equilibrium with the parent was supposed for ²²⁶Ra released to the rivers since virtually no U and Th in soluble CaCl₂ waste streams

Environmental concentrations (2)

- ²³⁵U-series was not considered
- Since the Dose Conversion Coefficients (DCC) of a parent nuclide in the ERICA tool includes all daughters with half-life up to 10 d, only daughter nuclides with half-life >10 d were considered
- If no concentrations in water provided, calculated with default solid-liquid coefficients (K_d) provided by the ERICA tool.



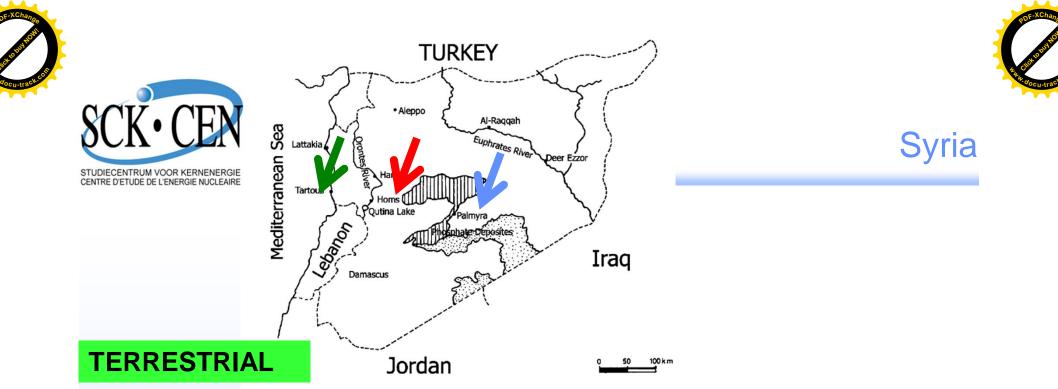
SCK · CEN

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Tessenderlo Chemie (1)

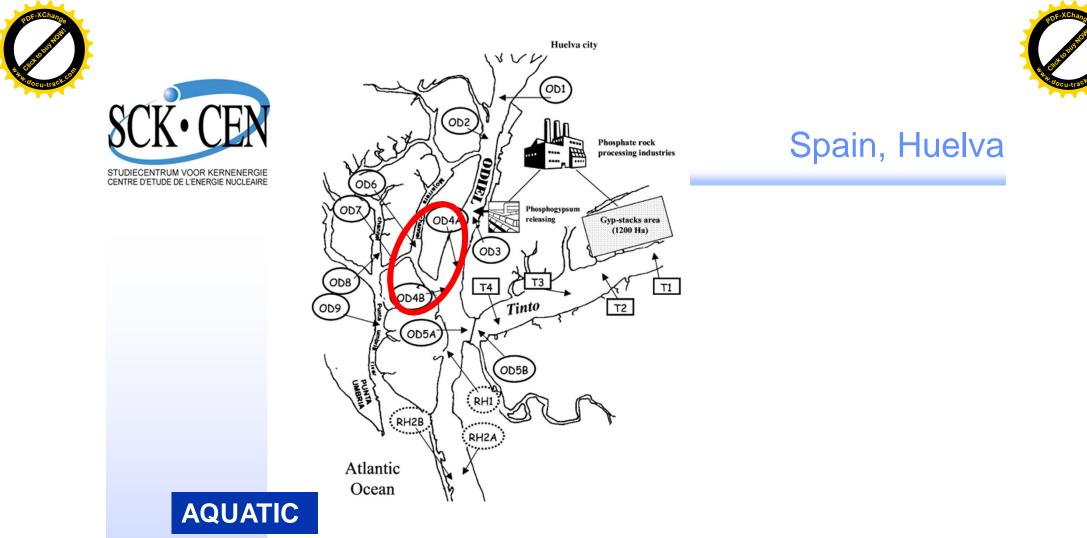
Tessenderlo Chemie (2)

TERRESTRIAL


Concentrations (Bq kg⁻¹) on right river border of Grote Laak

	²²⁶ Ra	²¹⁰ Pb*	²¹⁰ Po *
Mean concentrations	811	649	649
Mean concentration for soil sampled at highest dose			
rate locations	5822	4658	4658

AQUATIC

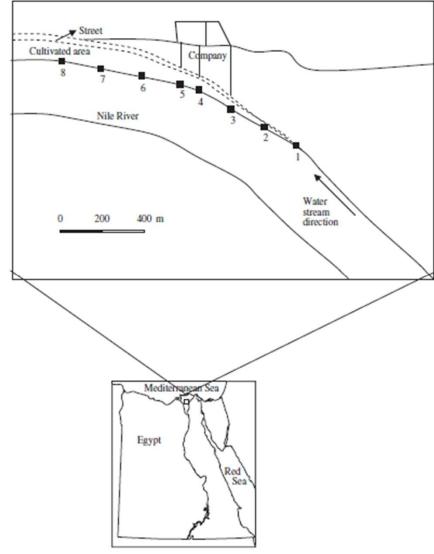

²²⁶Ra concentrations in river water (Bq L⁻¹) and sediment (Bq kg⁻¹) of Grote Laak and Winterbeek (Average and maxima in period 1998 - 2001)

		1998		1	999	2	000	2001		
		Water	Sediment	Water	Sediment	Water	Sediment	Water	Sediment	
Grote Laak	average	0.14	818	0.18	528	0.21	475	0.13	327	
	maxima	0.37	1200	0.43	902	0.34	629	0.38	461	
Winterbeek	average					0.33	676	0.17	523	
	maxima					0.63	852	0.34	629	

Concentrations of natural radionuclides in soil samples (Bq kg⁻¹) collected in the vicinity of the mine

	238U*	²³⁴ Th	²³⁴ U	²³⁰ Th	²²⁶ Ra	²¹⁰ Po	²¹⁰ Pb
Mine area Village, main gate Table 2 line 6	1168	750	750	750	820	1557	1184
P-fertilizer plant East of factory Table 5 line 6	38	38	38	38	56	60.6	39.7
Soils collected near load platform Tartuous city, 2 km S. East	159	159	159	159	144	238	224

Concentrations of ²²⁶Ra, ²¹⁰Po, ²¹⁰Pb in water (mBq I⁻¹) and sediment (Bq kg⁻¹) for the Huelva estuary at Odiel-4 (data for 1990 and 1999)


		Water	Sediment				
	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Po	
1990	86	29	29	432	624	624	
1999	12	2.3	2.3	318	615	615	

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

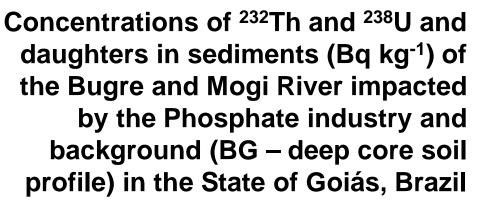
Egypt

AQUATIC

²²⁶Ra and ²³²Th in sediments (Bq kg⁻¹), water (Bq I⁻¹) and *Phragmites australis* (Bq kg⁻¹) in vicinity of outlet of P-fertilizer industry discharging to the Nile

Sample	Position	²²⁶ Ra	²³² Th
Sodimont	Upstream	17.1	10.9
Sediment	Downstream	24.8	16.1
Water	Upstream	0.6	
Water	Downstream	0.3	
Plants	Upstream	11.8	6.9
Fiants	Downstream	17.0	22.5

PG-piles


Pond

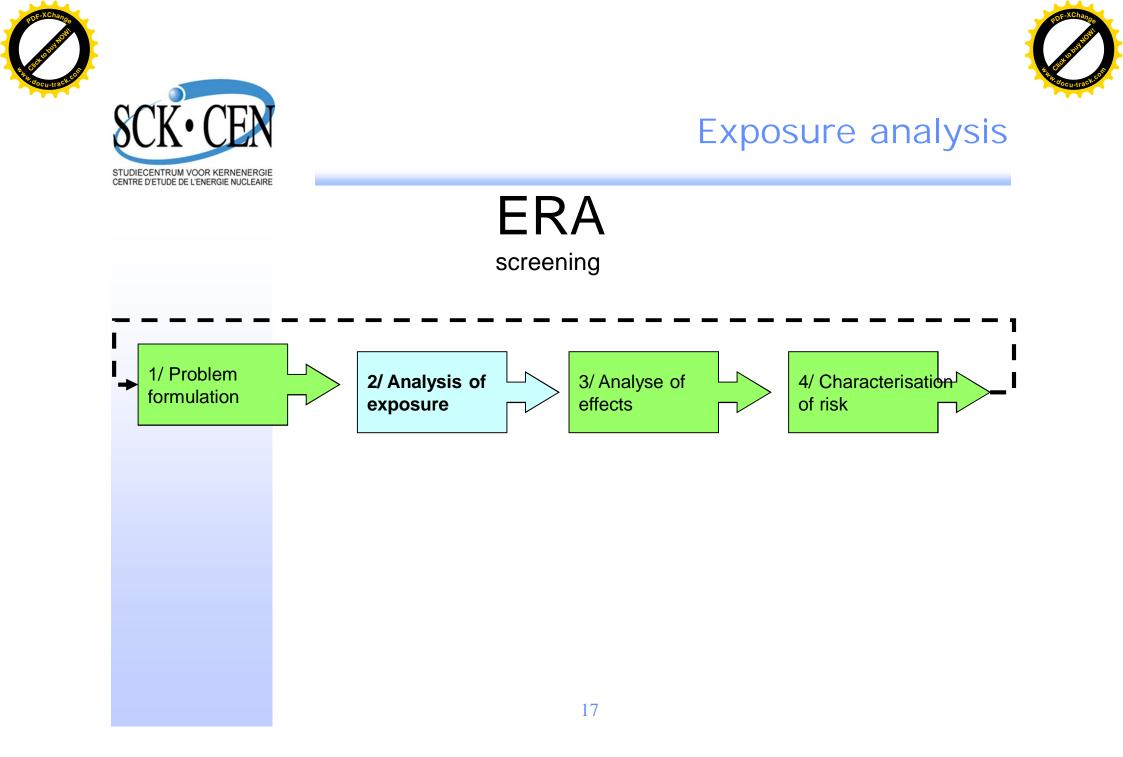
BR= Bugre River

MR= Mogi River

Brazil, State of Goias

A DESCRIPTION OF THE REPORT OF										
	²³² Th	²²⁸ Ra	²²⁸ Th	²³⁸ U	²³⁴ Th	²³⁴ U	²³⁰ Th	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Pc
Bugre River	198	86	86	118	118	118	118	43	56	56
Mogi River (mean of 9										
locations)	93	73	73	72	72	72	72	43	60	<u>60</u>
Background (BG)	61	71	71	54	54	54	54	45	57	57
Bugre River minus BG	137	15	15	64	64	64	64	-	-	-
Mogi River minus BG	32	2	2	18	18	18	18	-	3	3

ERICA reference organisms for terrestrial and aquatic environments

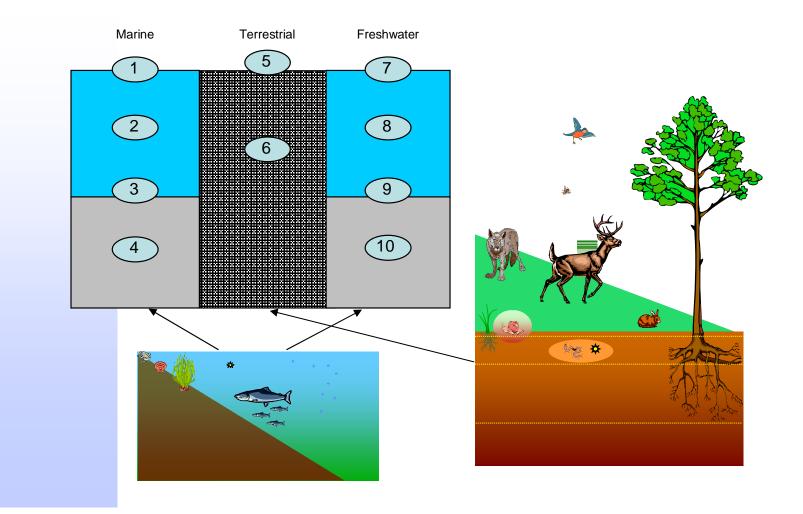

Freshwater	Terrestrial
Amphibian (frog)	Amphibian (frog)
Benthic fish	Bird (duck)
Bird (duck)	Bird egg (duck egg)
Bivalve mollusc	Detritivorous invertebrate
Crustacean	Flying insects (bee)
Gastropod	Gastropod
Insect larvae	Grasses & Herbs (wild grass)
Mammal	Lichen & bryophytes
Pelagic fish (salmonid/trout)	Mammal (rat, deer)
Phytoplankton	Reptile
Vascular plant	Shrub
Zooplankton	Soil Invertebrate (earthworm)
	Tree (pine tree)

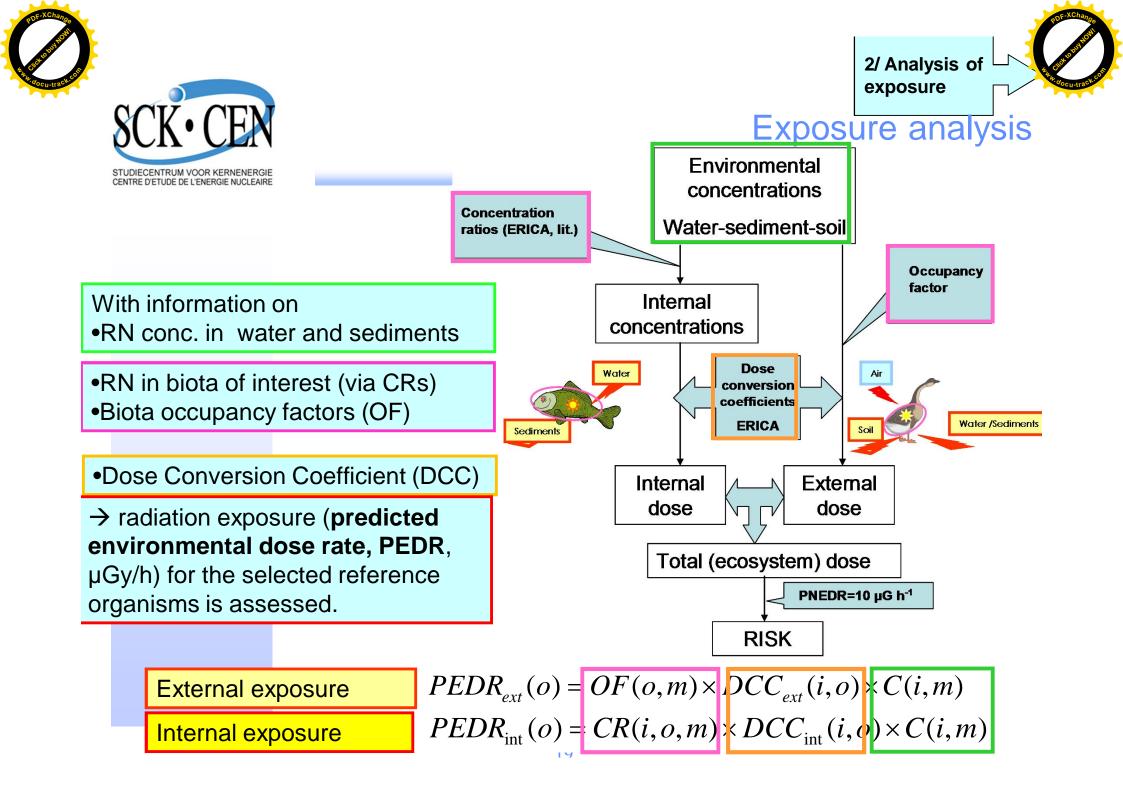
ERICA reference organisms

Selected on the basis of – radiosensitivity, ecological relevance

Bias towards European species

All **default** information on transfer and dose-rate estimation relate to these entities





STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

The ten ERICA habitats

Protection of non-human biota

Data gaps for environmental transfers

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Terrestrial ecosystem

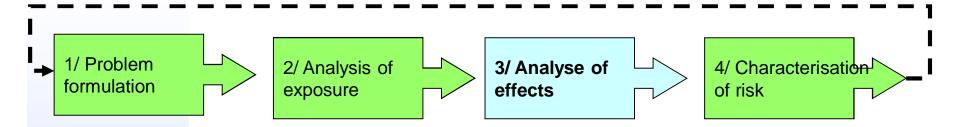
				Detritivorous	Flying		Grasses	Lichen &	Mammal	Mammal			Soil Invertebrate	
	Amphibian	Bird	Bird egg	invertebrate	insects	Gastropod	& Herbs	bryophytes	(Deer)	(Rat)	Reptile	Shrub	(worm)	Tree
Ро							1.24E-01	6.28E+00	2.78E-03	2.78E-03		9.85E-02		3.84E-02
Pb	1.20E-01	6.15E-02		7.53E-01	6.09E-02	7.27E-03	6.65E-02	6.00E+00	3.88E-02	3.88E-02		3.08E-01	2.85E-02	7.59E-02
Ra		3.62E-02		9.00E-02		4.77E-02	3.94E-02	2.12E-01	2.65E-02	2.65E-02		2.40E-02		6.75E-04
U		5.41E-04					1.46E-02	7.09E-02	1.06E-04	1.06E-04		7.06E-03	8.84E-03	6.79E-03
Th		3.89E-04					4.37E-02	1.03E-01	1.22E-04	1.22E-04		1.60E-02		1.08E-03

Freshwater ecosystem

		Benthic		Bivalve			Insect		Pelagic		Vascular	
	Amphibian	fish	Bird	mollusc	Crustacean	Gastropod	larvae	Mammal	fish	Phytoplankton	plant	Zooplankton
Ро			22000		38000	9900			240	27000	4000	
Pb												
Ra			940	80	1500	1500			80	1100	1800	
U				30		500			30	120	2900	48
Th				110					110		1260	

Marine ecosystem

											Sea anemones	Sea anemones		
	(Wading)	Benthic	Benthic				Pelagic		Polychaete		or true corals -	or true corals -	Vascular	
	bird	fish	mollusc	Crustacean	Macroalgae	Mammal	fish	Phytoplankton	worm	Reptile	colony	polyp	plant	Zooplankton
Ро	17000	60000	10000	17000	26000		76000		35000	1000	20000			
Pb		10000	19000		490000		26000		1700	1000				
Ra	280	150		280	1000		81		65	89				
U	14			14	140	230			32	120			1000	1000
Th	600			600	730000		7500		510	2000				


IAEA-EMRAS-2: Biota working group

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Effects analysis

- Derivation of Predicted No Effect Dose Rate (PNEDR)
 - Values derived following different approaches and have different protection level e.g.
 - IAEA: 40-400 µGy/h
 - ICRP: 4-4000 µGy/h
 - EC-ERICA and PROTECT: 10 μGy/h (~100 mSv/y)
 - Assumed to protect ecosystems
 - Screening dose rate \rightarrow to screen out sites

Risk assessment

- Deterministic approach
- Risk Quotient (RQ) is ratio of two values

PEDR Predicted environmental dose rate

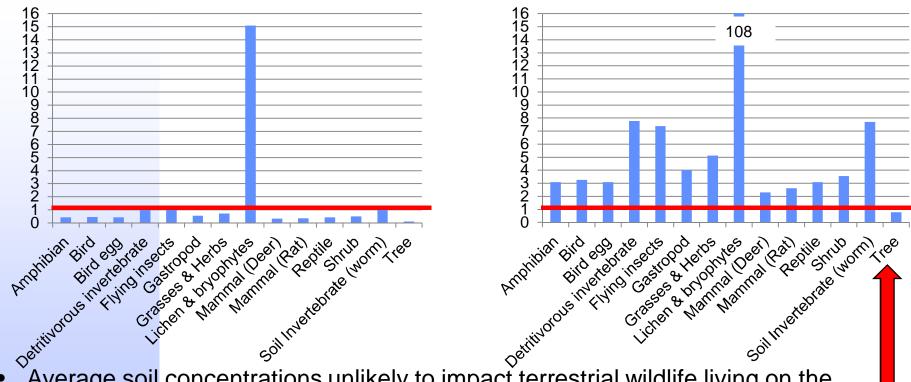
PNEDR Predicted no effect dose rate

PROTECT-ERICA SV: 10 µGy/h

Using the ERICA tool

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Welcome to the ERICA Assessment Tool To start a New Project select 'File', 'New'

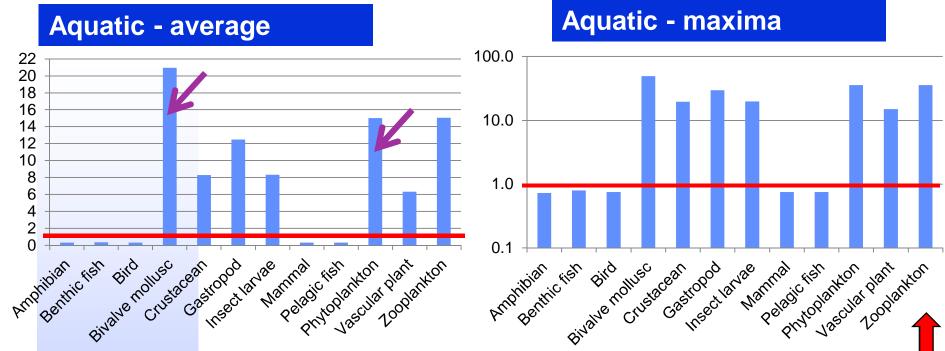


RQ for Tessenderlo – Grote Laak river banks

Terrestrial – average hot spots

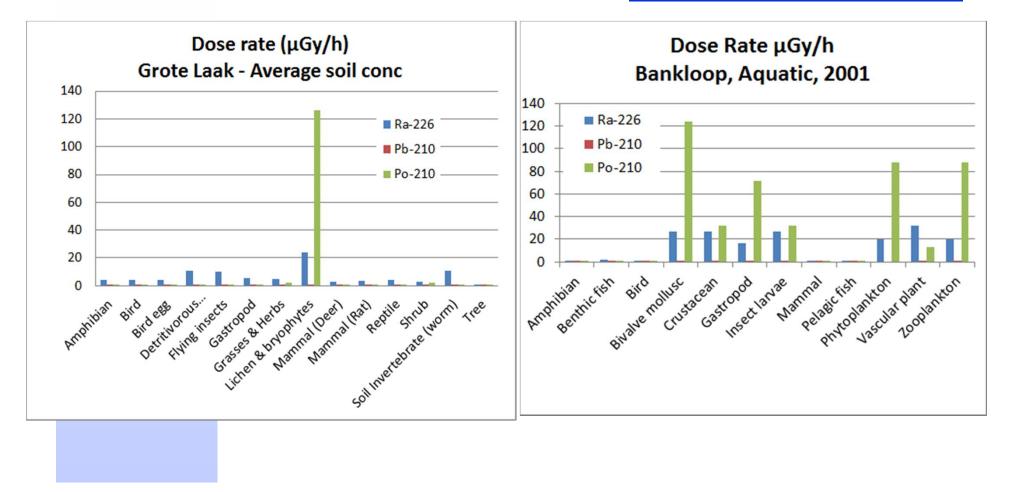
Terrestrial - average

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE


- Average soil concentrations unlikely to impact terrestrial wildlife living on the river banks of Grote Laak.
- No effects dose rates available for organism for which RQ>1
- Dose rates were almost entirely due to internal exposure
- However, for screening assessment conservative approach should be used ...

RQ for Tessenderlo Grote Laak - Aquatic 1999

- At dose rates predicted for bivalve molluscs, crustaceans & gastropods, some effects observed
- For insect larvae, no effects observed up to a dose rate of 200 µGy h⁻¹
- For all other organisms for which RQ>1, either no effects were observed for dose rates obtained or no effects data provided by ERICA Under PROTECT project, organism group specific SV derived
- Plants: $SV = 70 \mu Gy h^{-1}$; Invertebrates: $SV = 200 \mu Gy h^{-1}$ However, for screening assessment conservative approach should be used ...

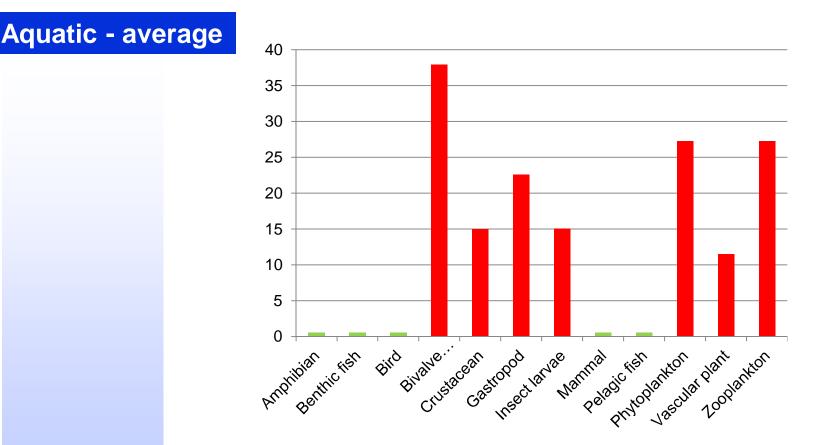


Dose contributing radionuclides

Terrestrial - average

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Aquatic - average



STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

RQ for Tessenderlo Winterbeek- Aquatic Average 2000

- Same picture as Grote Laak but higher doses
- For many organisms even the PROTECT organisms specific SV exceeded (red bars)

Т

Ε

R

R

Ε

S

Т

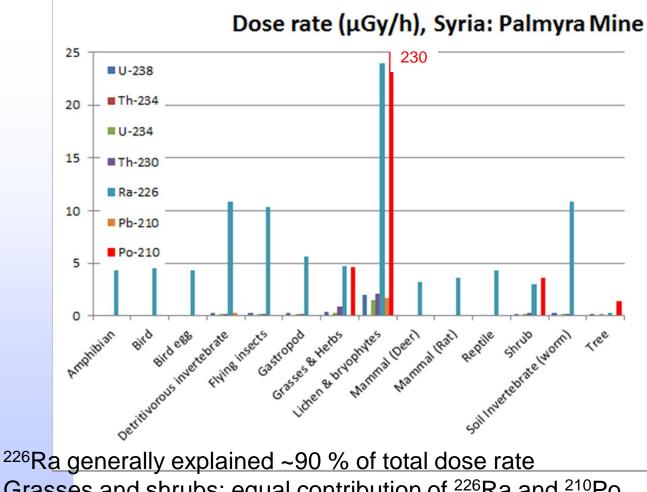
R


Α

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Syria P-fertilizer plant, P-platforms and P-mine

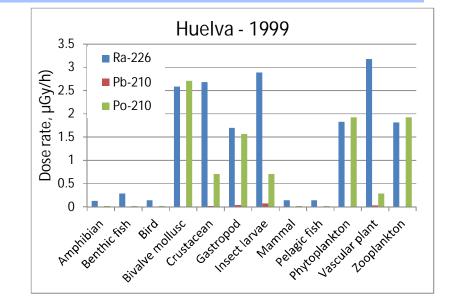
- RQ < 1 for terrestrial wildlife in vicinity of P-fertilizer plants and P-loading platforms in harbour
- Palmyra P-mine



- Detritivorous invertebrates, flying insects, grasses&herbs, trees: RQ just above 1
 - No effects observed at related dose rate
- Lichens and bryophytes: RQ ~25 or dose rate ~250 µGy h⁻¹
 - No effects data available for this dose rate

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Syria


- Grasses and shrubs: equal contribution of ²²⁶Ra and ²¹⁰Po
- Trees: 70 % of dose rate by ²¹⁰Po ; Lichens and bryophytes: 90% •
- No role of ²³²Th chain •

Spain – P-fertilizer plant Huelva – very high RQ Effects expected

RO **1990** 1999 Amphibian 0.11 0.01 Benthic fish 0.14 0.03 Bird 0.12 0.02 5.18 **Bivalve** mollusc 0.53 2.70 0.34 Crustacean 0.33 Gastropod 3.13 Insect larvae 2.73 0.37 Mammal 0.12 0.02 Pelagic fish 0.12 0.02 0.38 Phytoplankton 3.74 0.35 Vascular plant 2.52 Zooplankton 3.74 0.37

Dose rate entirely due to water concentration, because internal dose is most important contributor and CR based in water concentrations

FACTOR 10 but ± no difference in sediment conc

		Water	Sediment				
	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Po	
1990 FACTOR 10	86	29	29	432	624	624	
1999 TACTOR 10	12	2.3	2.3	318	615	615	

Egypt – impact on wildlife of Nile River

	Downstream	Upstream	Downstream-upstream
Amphibian	1.03	0.57	0
Benthic fish	1.07	0.59	0.0007
Bird	1.07	0.59	0
Bivalve mollusc	70.30	37.85	0.0008
Crustacean	27.60	14.53	0.0010
Gastropod	41.86	22.54	0.0008
Insect larvae	27.60	14.54	0.0021
Mammal	1.07	0.59	0
Pelagic fish	1.07	0.59	0
Phytoplankton	50.90	28.63	0
Vascular plant	0.34	0.75	0.4125
Zooplankton	50.74	27.91	0

Aquatic

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Additional risk due to released from P-fertilizer industry to Nile River is negligible

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Brazil – P-fertilizer plant

	Bugre River	Mogi River	Background	Bugre River minus BG	Mogi River Minus BG
Amphibian	0.37	0.23	0.17	0.20	0.06
Benthic fish	0.38	0.23	0.18	0.20	0.06
Bird	0.37	0.23	0.17	0.20	0.06
Bivalve mollusc	2.28	1.41	1.08	1.20	0.34
Crustacean	6.21	3.81	2.88	3.33	0.94
Gastropod	2.26	1.39	1.06	1.20	0.34
Insect larvae	6.22	3.83	2.89	3.33	0.94
Mammal	0.37	0.23	0.17	0.20	0.06
Pelagic fish	0.37	0.23	0.17	0.20	0.06
Phytoplankton	1.52	0.94	0.72	0.80	0.22
Vascular plant	35.67	21.80	16.37	19.30	5.43
Zooplankton	0.63	0.40	0.31	0.32	0.09

• Bugre River: RQ>1 for 6 Reference Organisms

 At associated dose rates no effects reported or no data available (except for insect larvae: moderate effects (cytogenic) observed)

- Mogi river and Control: RQ> 1 for same Reference Organisms except phytoplankton
- Incremental RQ>1 for Bugre River for 5 Reference Organisms; for Mogi River RQ_{inc}>1 only for vascular plant RQ

STUDIECENTRUM VOOR KERNENERGI CENTRE D'ETUDE DE L'ENERGIE NUICI FAIR

Conclusions

- Screening ERA for some P-industry case studies show that
 - ²²⁶Ra and ²¹⁰Po are the most important contributors do the dose
 - Dose rate is almost fully determined by internal dose rate
 - (past) activities may lead to environmental contamination resulting in dose rates >PNEDR
 - Higher TIER ERA recommended for aquatic ecosystems of Tessenderlo, Huelva, Brazil and terrestrial ecosystem in vicinity of P-mine in Syria

Higher TIER ERA may include

- Less conservative assumptions
- More in depth site monitoring for environmental concentrations or radionuclide concentrations in biota
- Effects studies on species concerned in lab and/or in field
- If field tests established: non-radioactive contaminants should be evaluated since effects observed may not be caused by RNs
- Importance to have info on BG concentrations

Thanks for your attention

Questions?

Copyright notice

Copyright © 2012 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL Operational Office: Boeretang 200 – BE-2400 MOL