

Utilization of Manganese clay industrial by-product IN BUILDING MATERIAL INDUSTRY

A. SHAHROHKI¹, Z. SAS¹, F. FÁBIÁN¹, J. JÓNÁS¹, G. LE QUÉRÉ², T. VIGH³, J. SOMLAI¹, <u>T. KOVÁCS¹</u>

¹UNIVERSITY OF PANNONIA, HUNGARY ²ECOLE DES MINES DE NANTES, FRANCE ³MANGANESE MINING AND PROCESSING LTD, HUNGARY

E U -	N	Ο	R	M	2		
2014							

JUNE 17 – 19, 2014, HOTEL DAP, PRAGUE, CZECH REPUBLIC

Introduction

Building materials (BM) in general

Role of building materials in human health, radiological aspect

Raw and add materials

New synthetic BM

Reuse of industrial by-products (BP)

• Potential starting material

Recycling could reduce the environmental impact

Overall radiological survey of NORM origin by-products

Favorable compounds \rightarrow NORM by-products as raw or add material in "clay-based" BM industry

- Red mud
- Coal slag
- Manganese clay
- Oil sludge

Mixing with clay matrix

Survey of potential Hungarian clays used in building material production

Unified classification protocol in PE-RRI

Reuse possibility of NORMs in BM production Decorative color as add material or raw material in case of brick production

Closest building material factory capacity: 200 million brick/year ightarrow 600 000 t/year

- Distance of Manganese clay reservoirs: 22 km
- 20% Manganese clay: 120 000 t/year
- Total Mn-clay = 2 800 000 t → 23 year
- Distance of **red mud** reservoirs: 7 km!
- 20 % red mud: 120 000 t/year
- Total Red mud = 50 000 000 t \rightarrow ~400 year

 $\frac{\text{EU-NORM2}}{_{2014}}$

Manganese clay

- Originated as a result of manganese mining and processing of oxide type Manganese ore
- The ore was separated from the clay with excelsior (washed)
- •~2.8 Mt of manganese clay have deposited
- Favorable matrix features
- Ion exchanger capacity

Manganese clay

Chemical components [%]								
SiO ₂	SiO₂ 29-33 BaO 0.05-0.							
TiO ₂	0.3-0.4	CaO	3-7					
Al ₂ O ₃	6-10	MgO	2-4					
Fe ₂ O ₃	22-26	K ₂ O	2-3					
MnO ₂	13-19	Na ₂ O	0.2-0.3					
MnO ₂	2-3	P_2O_5	0.4-0.5					

 $\frac{\text{EU-NORM2}}{{}_{2014}}$

Radionuclide content

Natural radioisotope content

Manganese (oxide, carbonate) ore, → Natural origin radioisotopes (U-238 (Ra-226): 20-200 Bq/kg, Th-232: 40-400 Bq/kg, 600-900 Bq/kg)

Radiological aspect of natural isotopes in case of BMs

Classification

Gamma-dose (Ra-226, Th-232, K-40)

• I-index

$$I = \frac{C_{Ra-226}}{300} + \frac{C_{Th-232}}{200} + \frac{C_{K-40}}{3000}$$

Material	Dose criterion (mSv y ⁻¹) <u>1.0</u>		
Used in bulk amounts	1<10		
(concrete, brick, etc.)	<u>1 3 1.0</u>		
Superficial or with			
restricted use (tile, etc.)	1 ≥ 0.0		

Radon exhalation

Problematic task

Radon exhalation greatly depends on the structure of the materials

The investigation of possibilities to reduce exhalation capacity are very important

• Radon radon level \rightarrow 300 Bq/m³

Leaching of radionuclides

Leaching tests are required

 $\frac{\text{EU-NORM2}}{_{2014}}$

Classification protocol in PE-RRI

Determination of radionuclide content

- By-product sampling
- Gamma spectrometry, alpha spectrometry
- Classification (I-index)

Radon emanation exhalation influencing effects

- Heat-treatment
- Moisture content
- Sample thickness

Internal structure features

- Porosity
- Superficial morphology

Leaching behavior tests

- CEN/TS 15364:2006 Characterization of waste
 - Acid and base neutralization capacity test

Measurements and methods

SAMPLE COLLECTION

Clay samples

Manganese clay

- Clay samples were taken from
 20 sample from Manganese Tüskevár (Hungary)
 - clay reservoir (Úrkút)
 - 0 40 cm depth

GAMMA SPECTROMETRY

- Drying, milling, storage in Marinelli vessels
- Instrument: ORTEC GMX40-76 HPGe detector with efficiency of 42 %
- Data collection: Tennelec PCA-MR 8196 MCA
- Measurement time: 80 000s

Determination of radon emanation and exhalation influencing parameters

Spherical and stick shape (d = 4 - 5 mm) clay-mixed samples (20% Manganese clay)

Effect of heat-treatment

- Preheated kiln
- 4 h heat-treatment 100 750 °C

Exhalation measurement

- Optimal measurement conditions (Thickness \rightarrow free exhalation state)
- Effect of heat-treatment
- Internal structure measurements
- Specific surface, porosity (focused on micro and mezo pores)
- Pore diameter

 $\frac{\text{EU-NORM2}}{_{2014}}$

Leaching tests

EN/TS 15364:2006 (ANC/BNC tests)

- For waste categorization
- Acid and base neutralizing capacity at 8 points between pH 4-12
- Liquid/solid ratio, concentrations, pH, redox potential, complex forming capacity and the aging of the waste can be measured

Provide information about the long term behavior of the waste

MSZ-21470-50

Hungarian regulation for toxic elements, heavy metals and chrome(IV) in soil

- 4 one-step extractions
- distilled water water soluble
- Lakanen-Erviö solution available for plants
- $HNO_3+H_2O_2$ total digestion
- HNO₃+HCl total digestion

Leaching tests

Tessier-extraction

For metals

- 5 step sequential extraction
- Gives information about the speciation

Ion-exchangable	1 M MgCl ₂ at pH 7 for 1 h at room temperature with constant stirring			
Bound to carbonates	NaOAc set to pH 5 with acetic acid at room temperature for 5 h with constant stirring			
Bound to Fe- and Mn-oxides	0.04 M NH ₂ OH*HCl in 25% acetic acid for 6 h at 93 ^o C			
Bound to organic matter	0.02 M HNO3 and 30% H2O2 set to pH2 with HNO3 for 4 h with occasional stirring, then 3,2 M NH4OAc in 20% HNO3, dilute with distilled water and 30 minute of vigorous stirring			
Residual	Microwave digestion			

Mesurements of leachate

Na, K, Ca Mg, Heavy metals, rare earth: -ICP, ICP-MS

NORM nuclides:

- Ra isotopes (226, 224, 228) alpha spectrometry + Rn emanation method
- U isotopes (234, 235, 238) ICP-MS and/or alpha spectrometry
- Po-210, Pb-210 alpha spectrometry, LSC

Results – Gamma spectrometry

27 clay samples											
		Activity Concentration [Bq/kg]									
	Ra-226	±	Th-232	±	K-40	±	- I-Index				
AVG	37	7	40	9	803	37	0.59				
Min	16	3	31	7	534	16	0.40				
Max	105	17	49	11	1127	105	0.81				

20 Manganese clay samples								
	Activity Concentration [Bq/kg]						lindov	
	Ra-226	±	Th-232	±	K-40	±	I-muex	
AVG	41	4	40	4	585	20	0.53	
Min	23	3	25	2	369	15	0.37	
Max	63	6	53	5	757	16	0.65	

Low I-indexes \rightarrow can be mixed according to choices

Z. Sas, J. Somlai, J. Jonas, G. Szeiler, T. Kovacs, Cs. Gyongyosi, T. Sydo: Radiological Survey of Hungarian Clays; Radon Emanation and Exhalation Influential Effect of Sample and Internal Structure Conditions, ROMANIAN JOURNAL OF PHYSICS 58:Number supplement (2013)

Z. Sas, J. Somlai, G. Szeiler, T. Kovacs: Radon emanation and exhalation characteristic of heat-treated clay samples, RADIATION PROTECTION DOSIMETRY 152:(1-3) pp. 51-54. (2012)

 $\frac{\text{EU-NORM2}}{{}_{2014}}$

Results - Optimal measurement conditions

Free exhalation state EXHALED (DECAY WITHIN MATERIAL) • If thickness << Diffusion length • emanated radon \approx exhaled 325 Free exhalation depends on: 300 Specific exhalation [mBq kg¹ h⁻¹] • Ra-226 content 275 250 Emanation coefficient 225 Amount of the sample 200 175 150 125 100 2 3 0 1 4 5 Sample diamater [cm]

Z. Sas, J. Somlai, J. Jonas, G. Szeiler, T. Kovacs, Cs. Gyongyosi, T. Sydo: Radiological Survey of Hungarian Clays; Radon Emanation and Exhalation Influential Effect of Sample and Internal Structure Conditions, ROMANIAN JOURNAL OF PHYSICS 58:Number supplement (2013)

Z. Sas, J. Somlai, G. Szeiler, T. Kovacs: Radon emanation and exhalation characteristic of heat-treated clay samples, RADIATION PROTECTION DOSIMETRY 152:(1-3) pp. 51-54. (2012)

 $\frac{\text{EU-NORM2}}{{}_{2014}}$

EU-NORM2

2014

Results – Effects of heat-treatment

Radon exhaling capacity

- The radon exhalation depends on applied heat
- In case of 750 °C only 5 % of the initial
- Significant porosity changes
- Radon emanation is in direct proportion to radon exhalation under free exhalation state

Effective way to reduce exhalation capacity

Z. Sas, J. Somlai, G. Szeiler, T. Kovacs: Radon emanation and exhalation characteristic of heat-treated clay samples, RADIATION PROTECTION DOSIMETRY 152:(1-3) pp. 51-54. (2012)

Z. Sas, J. Somlai, J. Jonas, G. Szeiler, T. Kovacs, Cs. Gyongyosi, T. Sydo: Radiological Survey of Hungarian Clays; Radon Emanation and Exhalation Influential Effect of Sample and Internal Structure Conditions, ROMANIAN JOURNAL OF PHYSICS 58:Number supplement (2013)

EU-NORM2

2014

Results – Internal structure features

Porosity changes

- Remarkable porosity changes
- Mezopores closed
- Between 20 to 60nm pore diameter
- Great effect on the emanation
- On exhalation capacity as well

Z. Sas, J. Somlai, J. Jonas, G. Szeiler, T. Kovacs, Cs. Gyongyosi, T. Sydo: Radiological Survey of Hungarian Clays; Radon Emanation and Exhalation Influential Effect of Sample and Internal Structure Conditions, ROMANIAN JOURNAL OF PHYSICS 58:Number supplement (2013)

Z. Sas, J. Somlai, G. Szeiler, T. Kovacs: Radon emanation and exhalation characteristic of heat-treated clay samples, RADIATION PROTECTION DOSIMETRY 152:(1-3) pp. 51-54. (2012)

Results – Leaching test

- CEN/TS 15364:2006 Characterization of waste
- MSZ-21470-50: Hungarian regulation for toxic elements, heavy metals and chrome(IV) in soil
- Tessier-extraction: 5 step sequential extraction

Measurements in progress...

Results – Leaching test

Chemical components

NORM nuclides

Element	700 °C	850 °C		Flomont	700 °C	850 °C			
Liement	mg/ k	mg/ kg (dry)		Liement	mg/ kg (dry)				
Са	704±23	680±11		Cd	<0.12	<0.12			
						0.33+0.02	Flamant	700 °C	850 °C
Mg	34±4	15±3	Cu 0.34±0.02		0.0010101	LIEITIEIT	mBq/g (dry)		
Na	183±13	151±9		Zn	1.51±0. 2	2.11±0. 2	Ra-226	<1.5	<1.5
Cd	215±21	118±11		Sb	<0.01	<0.01	Th 232	<5	< 5
total Cr	<0.30	<0.30		Ва	0.63±0.02	2.05±0. 2	Po/Pb 210	11±	11±
Pb	<0.25	<0.25		Se	<0.012	<0.012	U-238	7 ± 3	8±4
Hg	0.014±	<0.005		Мо	<0.05	<0.05			
Ni	<0.25	<0.25		Fe	22±2	21±2			
As	<0.009	0.016±0.06		Mn	18±1	15±1			
									EU-NORM2

Reuse of Manganese clay

Based on the results: any mixing ratio is accepted over 750 C burning temp

Outside application

Inside application

Measurements in progress...

Preparation of samples:

 burning 1050 C
 self-glazing, coating is not necessary

Leaching method:

- by strong alcohol (pálinka)
 ambient prameters (pH, C etc)
 exctraction time (over 1 month)
 - organoleptic tests (by myself)

Thank you for your attention! Děkuji vám za pozornost! Köszönöm a figyelmet!

