Radiological characterization of an ancient Roman tuff-pozzolana cave in Orvieto (Italy)

*C. Nuccetelli*¹, *R. Trevisi*², *M. Ampollini*¹, *F. Cardellini*³, *S. Tonnarini*², *K. Kovler*⁴

- ¹ Department of Technology and Health, ISS, Italy,
- ² Department of Occupational Hygiene, INAIL, Italy
- ³ National Institute of Ionizing Radiation Metrology, ENEA-CRE, Italy
- ⁴ National Building Research Institute, Technion, Israel

Introduction

- Orvieto: 110 km north of Rome, built by Etruscans in the 9th-8th century BC on a tuff cliff (the Rock of Orvieto ~ 1.3 km²).
- The Rock of Orvieto results from cooling of a high temperature pyroclastic flow.
- Two igneous materials characterize the Rock:
 - *tuff:* marked stony appearance and reddish-yellow colour;
 - *pozzolana:* blackish-grey colour.
 - inhomogeneous distribution.
- Different uses in building construction since Roman age:
 - *tuff*: cut in shape of large brick and used directly in building construction
 - pozzolana: component ("Cuma's sand" in the Vitruvius' "De Architectura") of a sort of cement, the opus caementicum, able to rapidly set also underwater and with a long durability; still in use for hydraulic cement preparation.

Introduction (cont.)

Many caves now touristic, lighted and air conditioned.

EUNORM 2 - Prague 2014

Introduction (cont. I)

- Study in a pozzolana quarry to characterize the natural radioactivity from the raw materials
- Tuff and pozzolana rich in natural radioactivity and still used as building materials

	A _{Tuff} (Bq kg⁻¹)	A _{Pozzol} (Bq kg ⁻¹)		
²²⁶ Ra	209	164		
²³² Th	349	229		
⁴⁰ K	1861	1341		
important from RP point of view				

Other purpose: test and intercompare different measurement and dose assessment methods in an extreme situation with high Rn/Tn levels and gamma dose rate.

Materials and Methods (1)

- cave under study located under a private dwelling
- large cave: ~ 6 x 3 m² with a vault ceiling of ~ 4 m reachable through completely dark small caves and narrow tunnels
- floor and first 50 cm of walls of tuff, upper walls and ceiling of pozzolana.
- two component distribution depending on the material found by ancient miners: when tuff, harder than pozzolana, found excavation direction changed

EUNORM 2 - Prague 2014

Materials and Methods (2)

In situ measurements

gamma dose rate, gamma spectrometry, radon and RnDP/TnDP monitoring

- Portable HPGe gamma spectrometers
 - crystal efficiency 70%, nitrogen-cooled, measurement live time = 3 h 20 min
- Portable Nal gamma spectrometer
 - NaI(TI) spectrometer equipped with dedicated software to calculate gamma dose rate
- Gamma dose rate meter
 - plastic scintillator (3"x3") to intercompare results in terms of gamma dose rate.
- Radon monitoring
 - 0.6 l ionization chamber recording temperature, pressure and relative humidity ~4 h
- RnDP and TnDP activity concentrations in air
 - two independent acquisition units: total airborne RnDP/TnDP and unattached fraction, 1 alpha spectrometer for each unit: sampling = 1 h, measurement ~4 h

Lab measurements

- HPGe 70% gamma spectrometer to measure tuff and pozzolana samples
 - densities of tuff and pozzolana = 1600 kg m⁻³ and 1000 kg m⁻³; stones crushed, homogenized, put in a 500 cm³ Marinelli beaker
- ICP-MS: chemical analysis of pozzolana/tuff samples

Results – Gamma in situ measurements

Gamma dose rate

huge amount of tuff and pozzolana

- plastic scintillator facing the wall at 0.2 m above the floor: about 780 nGy h^{-1}
- Nal(Tl) detector, two tests:
 - first measurement in 4π geometry = 840 nGy h⁻¹
 - second measurement: detector placed in position similar to the plastic scintillator = 760 nGy h⁻¹

Gamma emitting radionuclide activity concentration

the gamma spectrum recorded in the cave used

- to study *in situ* the ²²⁶Ra bulk material disequilibrium of chain and
- to estimate the gamma dose rate contribution from 40 K , 238 U and 232 Th.
- method already used successfully in indoors environments but in the cave 4 π geometry not working accurately

Results - Rn

- As expected, high Rn levels during 4 hours of monitoring
- Average Rn activity concentration = 11059 ± 526 Bq m⁻³.
- Microclimatic parameters:
 - average temperature about 15
 ° C
 - humidity rate about 99%.
- Good agreement with results in Roman catacombs, underground places similar from a structural point of view and excavated in tuff
 - average Rn activity concentration between 7000 and 38000 Bq m⁻³ in 7 catacombs in Rome

EUNORM 2 - Prague 2014

Results - RnDP and TnDP

Alpha emission spectra of total airborne and unattached fraction of RnDP

- PAEC_{Rn}= 288 MeV cm⁻³
- EEC_{Rn} = 8300 Bq m⁻³
- F = 0.75
- f ~7%
- values justified by high airborne particulate concentration and poor ventilation
- similar results in Roman catacombs

New RnDP and TnDP measurement with 30 hours sampling to enhance TnDp signal

Results - Gamma spectrometry in Lab

Lab measurements confirmed:

- tuff and pozzolana rich in natural radioactivity particularly when compared with the world mean value of soil (UNSCEAR)
- 232Th > 238U peculiarity of volcanic materials from Central/Southern Italy

	²³⁸ U (Bq kg ⁻¹)	²³² Th (Bq kg ⁻¹)	⁴⁰ K (Bq kg ⁻¹)
Tuff	250 ± 20	370±10	2040 ± 30
Pozzolana	480±30	530±10	2490±40

These data used as input in *the ISS room model*: 840 nGy h⁻¹

Results - Chemical analysis (ICP-MS)

- Very similar chemical composition of tuff/pozzolana fractions
- alumo-silicate material
- standard requirements met for classification as pozzolanic material
 - mineral additive for concrete:
 minimum total content of silica
 +alumina + iron oxide at least 75%

	Fine fraction	Coarse fraction
CaO	5.68	5.94
SiO ₂	56.0	55.0
Al ₂ O ₃	18.1	18.2
Fe ₂ O ₃	3.87	3.74
MgO	1.07	1.07
TiO ₂	0.49	0.48
K ₂ O	5.87	5.89
Na ₂ O	2.33	2.42
P ₂ O ₅	0.20	0.16
Mn ₂ O ₃	0.14	0.14
SO ₃	0.10	0.20
LOI at 600 °C	5.15	5.20
LOI at 950 °C	0.79	0.59
Total LOI	5.94	5.79
H ₂ O	1.94	3.13
LOI = Loss of ignition	fine fr	action = particles < 0.6 mm

Conclusions (1)

- This special environment is a perfect "intercomparison room"
- bulk amount of tuff and pozzolana: high levels of natural radiation
- good agreement between tools and methods to measure gamma dose rate
- lab measurements confirmed the high tuff and pozzolana activity concentration, mainly Th, peculiarity of volcanic materials in Italy
- very high ²²²Rn activity concentration ~ 10000 Bq m⁻³
- RnDP: PAEC ~ 288 MeV cm⁻³ (EEC = 8300 Bqm⁻³)
- unattached fraction = 7% and equilibrium factor F ~ 0.75 from low air exchange rate and high aerosol concentration

Conclusions (2)

- ²¹⁸Po particularly present in the unattached fraction, ²¹⁴Pb and ²¹⁴Bi more abundant in the attached fraction: competition between radioactive decay and attachment to aerosol
- short sampling time (1 h): impossible evaluation of TnDp
- new measurements with long sampling time (30 h): significant counts of ²¹²Po, all data under elaboration
- a final remark: environments with extreme conditions and exceptional exposure levels can be very useful for in-field intercomparisons
- Orvieto cave similar to thermal plant of Lurisia, Piedmont (Italy): an intercomparison of radon passive detectors is going to be carried out in Summer 2014

Thank you for your attention!