NORM VI INTERNATIONAL SYMPOSIUM

COORDINATED RESEARCH PROJECT ON THE "APPROPRIATE LEVEL OF REGULATORY CONTROL FOR THE SAFE TRANSPORT OF NATURALLY OCCURRING RADIOACTIVE MATERIAL (NORM)"

> K.K.Varley Transport Safety Unit NSRW

IAEA International Atomic Energy Agency

CONTENTS

- Background Information
- Rationale for the CRP
- CRP Output
- IAEA Transport Regulations, TS-R-1
 - Exemption Values and their Origin
- CRP Approach and Materials Studied
- Objectives and Results for each Participant
- Conclusions

BACKGROUND INFORMATION

- International Conference on the Safety of Transport of Radioactive Material, 2003
 - Issue for further work: reconsideration of applicability of transport regulation to NORM
 - Additional research to relieve unnecessary burden on transport of low activity NORM
 - Board of Governors approved Action Plan, including Secretariat action to initiate CRP

RATIONALE FOR THE CRP

- 2005: TRANSSC recommended the examination of the adequacy of safety standards for transport of NORM
- 2006: CRP on the "Appropriate Level of Regulatory Control for the Safe Transport of Naturally Occurring Radioactive Material (NORM)"
 - Evaluate radiation hazards
 - Decide the degree of control to ensure safety

CRP OUTPUT

- CRP investigates an area of concern
- CRP output is independent; it does not feed into a regulatory review cycle directly
 - It is incumbent on Member States to pursue recommendations of the CRP
 - Only Member States can submit proposals for change to the regulations
 - CRP results may thus influence TS-R-1, TS-G-1.1 and/or other regulations

IAEA TRANSPORT REGULATIONS

- UN Agency with mandate to "enlarge the contribution of atomic energy to peace, health and prosperity throughout the world."
- "standards of safety for protection of health and minimization of danger"
- Regulations for the Safe Transport of Radioactive Material TS-R-1

TS-R-1 EXEMPTION VALUES

- TS-R-1 basis for modal/national regulations
 - International Maritime Dangerous Goods Code
 - National supplementary requirements
- Radionuclide specific exemption limits, Bq/g
- Distinction by "intended use"
 - TS-R-1 para. 107(e) provides 10× factor for materials not intended for radionuclide extraction
 - TS-G-1.1 para. 107.4 explains this includes physically/chemically processed materials

EXEMPTION VALUE ORIGIN

- Derived for BSS by a set of representative exposure scenarios, that would give rise to doses corresponding to the exemption of practices, *i.e.* < 10 µSv/y
- TS-G-1.1 para. 401.4: these scenarios were not specifically related to transport
- Subsequent calculations showed the limits in BSS were generally similar

CRP APPROACH 1

Studies were submitted by nine countries

- Brazil Canada France
- Germany Iran Israel
- Romania United Kingdom USA
- Australia submitted a report but did not participate
- Studies included national surveys and dose assessments of NORM transport

CRP APPROACH 2

- Standardised scenario calculation for 1 Bq/g
 - Canada, France, Germany, Israel
- Doses calculated for combinations of:
 - Facility and transport workers and members of the public;
 - Land (lorry, train) and sea (break bulk and container ship);
 - Packaged and unpackaged material;
 - Internal and external doses;
 - Normal transport and accident conditions;
 - Various operations including loading/unloading.

CRP APPROACH 3

- Some participants carried out an assessment of regulatory provisions for NORM transport
 - Consideration of exemption value validity
 - Proposed new values for exempt material
 - Considered type-specific exemptions
 - Proposed modification of regulations e.g.:
 TS-R-1 para. 107(e) allows a ×10 factor for NORM
 - unless intended for radionuclide extraction

CRP MATERIALS STUDIED

- coal ash (France)
- ores containing thorium and uranium (Brazil)
- pipe scale (France, Germany, United Kingdom)
- phosphates (Iran, Israel)
- potash and phosphatic fertilisers (Israel)
- tantalum raw materials (Canada)
- uranium ores (Brazil, Iran)
- uranium ore tailings (Romania)
- zircon (Iran, United Kingdom)

BRAZIL OBJECTIVES

- Provide a theoretical basis for the establishment of:
 - (i) A₁ and A₂ values for LSA-I uranium or thorium ores and concentrates as well as NORM and compare these with TS-R-1 limits
 - (ii) quantities of LSA-I materials and NORM based on A₁ and A₂ values to be transported in excepted packages
 - (iii) limiting upper values for the classification of NORM as LSA-I radioactive material

BRAZIL RESULTS

- Most conservative scenario was external dose to truck driver under normal transport conditions
 - No shielding between the radioactive load and the driver was considered
 - A factor of 15 could be used for the exclusion of NORM from transport regulations
 - Same order of magnitude as the ×10 factor
- TS-R-1 para. 408(a)(iv): x30 limiting factor is superfluous: impossible to reach limiting condition of 10 mSv/h at distance of 3 metres
- Excepted packages: x20 factor could be adopted to limit NORM activity concentration

CANADA OBJECTIVES

- Study composed of the Tantalum-Niobium International Study Center's "Radiological Assessment of the Transport of Tantalum Raw Materials"
- Examine the transport of tantalite and tin slag under normal and accident conditions
- Assess members of the public, transport workers and facility workers
- Conduct sampling and dose measurements
- Compare measurements with modelling

CANADA RESULTS

- Analysed 67 shipments of material
- >70% of tantalite was >10 Bq/g
- Modelled dose rates were more conservative than real measured dose rates
 - Containers not entirely full in reality
- Doses from potential accident <10 µSv/y
- All transport worker doses <1 mSv/y
- Based on 0.3 mSv/y reference dose, propose exemption value of at least 30 Bq/g

FRANCE OBJECTIVES

- Calculate A₂ values for the 'unlimited' materials, and exemption values for larger quantities of material (~20 tonnes)
- Examine the validity of the 10 mg limiting intake
- Derive A₂ values for accident conditions
- Take account of different transport conditions *e.g.* whether the material is in drums or bags
- Survey broad range of materials

FRANCE RESULTS

- Dose assessments from realistic scenarios
- Analysed 475 samples of various materials
- Calculation results agree with measurements
- Results include:
 - annual dose to the driver for 1 Bq/g normalised ²²⁶Ra concentration is 330 µSv/y
 - annual dose to the forklift driver for 1 Bq/g normalised ²²⁶Ra concentration is 500 µSv/y
 - U ore transport at 10 Bq/g induced 100 µSv/y
 - Handling of big bags with 7 Bq/g ²²⁶Ra+²²⁸Ra could exceed 1 mSv after <1000 hours exposure

GERMANY OBJECTIVES

- Review and categorise the most important materials containing natural radionuclides
- Review, analyse and evaluate the radiation exposure imposed by the shipment of NORM and expected exposure of the shipment staff and the population
- Develop evaluation criteria and safety requirements for NORM transport
- Develop procedures to determine the limits for exempt materials and consignments for transport of all NORM

GERMANY RESULTS

- Based on a 0.3 mSv/y dose limit:
 - For bulk transport of NORM in equilibrium a x5 factor could apply to exempt material regardless of the intended end use
 - TS-R-1 para. 107(e) could change as follows:
 - Delete the intended use restriction
 - Add a distinction between materials:
 - secular equilibrium: 5 Bq/g for Th and U
 - non-equilibrium: use formula in para. 405 with limits on certain radionuclides

IRAN OBJECTIVES

- Examine all aspects of NORM: characterisation, loading and types of packages, transport operations
- **Collect information and measurements on the normal transport of NORM:**
 - Mining and mineral processing
 - Oil and gas production
 - Phosphate industry
 - Scrap metal recycling
 - Uranium ore materials
 - **Evaluate radiological impact**

IRAN RESULTS

- Assessed doses for occupational scenarios of unpackaged phosphate rock:
 - Truck driver: 0.062 mSv/y
 - Mechanical loader operator: 2.07 mSv/y
- Marine transport and loading of ships was not considered, only offloading of ships and storage
 - Doses from offloading in all unpackaged scenarios was less than 20 μSv per shipment

ISRAEL OBJECTIVES

- Study production of potash from the Dead Sea and phosphate from an open mine
 - A few million tonnes produced annually and shipped unpackaged
- Estimate doses to workers carrying out the production, storage and transport
 - Concentrations of natural radionuclides in these materials are low
 - There has been some concern over health effects

ISRAEL RESULTS

- Concentrations in phosphate and potash are below values in RS-G-1.7:
 - ⁴⁰K in potash is about 15 Bq/g
 - U in phosphate is about 1-2 Bq/g
- Dose to loading workers at phosphate and potash facilities estimated at <0.3 mSv/y
- Dose to the public assumed at <10 µSv/y
- Consider applying the TS-R-1 exemption values with ×10 factor to loading of phosphate and potash

ROMANIA OBJECTIVES

- Look at the safe disposal and transport of tailings from the Crucea uranium mine
- Identify and evaluate the potential risks and radiological consequences due to transport and disposal of the very low level radioactive materials (NORM)
- Determine the radon population doses from tailing sites representative of present day and likely future conditions

ROMANIA RESULTS

- Results showed the effective dose for workers was <20 mSv/y
- The collective dose using a mathematical model was 0.2 mSv/y
- Total effective radon doses: 5.88 mSv in the witness zone; 15.50 mSv in the impact zone
 - Estimated effective dose <0.2 mSv/y
- Effective dose for all radionuclides transferred to the environment estimated at <1.4 × 10⁻⁶ Sv/y

UNITED KINGDOM OBJECTIVES

- Review all NORM transport in the UK
- Where appropriate, assess the radiological impact of the transport
- Coal, coal ash, iron and steel production, building materials, potash, phosphate rock and fertilisers, ores and mineral sands, wastes from the oil, gas and China Clay industries were all surveyed

UNITED KINGDOM RESULTS

- Concentration of radionuclides in building materials, potash, coal, coal combustion products and iron and steel production waste, were below exemption values
- No large scale transport of high activity materials. For phosphate, ilmenite and zircon a generic assessment of dose gave <0.2 mSv/y
- Truck transport of pipes from oil industry with Ra scale would give <0.1 mSv/y
- Truck transport of pipes from China Clay industry with Ra scale would give ~0.1 mSv/y
- Doses to the public were all <10 µSv/y

USA OBJECTIVES

- 1996 move to dose-based limits
 - Previously 70 Bq/g limit applied; materials had been transported safely for decades
 - TS-R-1 limits based on 10 µSv/y with a ×10 factor according to end use; found to be consistent with RS-G-1.7
 - U <1 Bq/g unamenable to control with a graded approach leading to 10 Bq/g
- TS-R-1 para. 107(e) references to extraction leads to four situations for a material

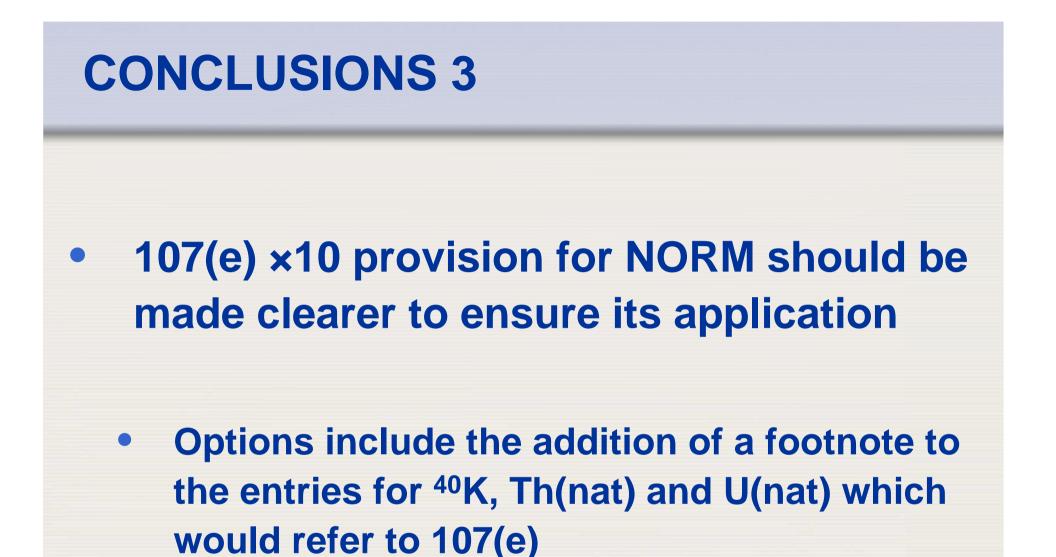
USA RESULTS

- Collected data from mineral and uranium fuel cycle industries:
 - One material was <1 Bq/g
 - Most were 1-10 Bq/g
 - Some were >10 Bq/g, up to several hundred
- 1-10 Bq/g materials were for extraction of metals, for radionuclides, or both
- For two materials with the same radiation energies and doses, exemption values may differ by two orders of magnitude
 - Exemption values should be risk-based
- Propose to remove the restrictions

CONCLUSIONS 1

 Calculated doses for personnel involved in transport (drivers and loaders) were within the range described in the Regulatory Context

• The doses to the general public were at least an order of magnitude lower



CONCLUSIONS 2

 1 Bq/g for U(nat) and Th(nat) was appropriate for the basic exemption value and that the ×10 provision for NORM as defined in TS-R-1 (2009) para. 107(e) was both appropriate and necessary

• 10 Bq/g value for ⁴⁰K may be too restrictive given the natural ratio to stable potassium

CONCLUSIONS 4

- Application of para. 405 to materials not in equilibrium should be made clearer
 - *E.g.* for radium which has been separated from its parent chain, the 10 Bq/g exemption value for ²²⁶Ra and ²²⁸Ra may be too high when not applying the rule for mixtures
- Final CRP report will be provided to TRANSSC 20 in June 2010

