HUMAN EXPOSURE TO NORM WASTE HEAPS

Presented To:

NORM VI

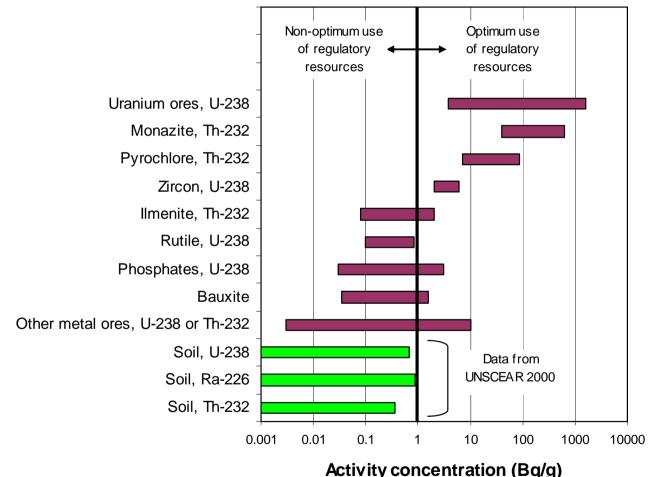
6th International Symposium

March 22-26, 2010

Presented By:

Douglas B. Chambers, Ph.D.

1


SENES Consultants Limited

6th International Symposium – Marrakech, Morocco

NORM is an acronym for <u>naturally-occurring</u> radioactive <u>materials</u>

- NORM is ubiquitous and is present in all soils and rocks
- NORM can be enhanced through man's activities (sometimes referred to as TENORM)

Concentration ranges of uranium and thorium series radionuclides in minerals

Source: After Wymer, 2008

NORM VI	3	SENES Consultants Limited
6 th International Symposium – Marrakech, Morocco		30 Years of Environmental Excellence Worldwide

But

4

In the majority of situations, the NORM concentrations do not pose potential problems to the environment or human health Processing of ores can lead to further enhancement of the radioactivity in the products, byproducts, residues or wastes

NORM VI

6th International Symposium – Marrakech, Morocco

SENES Consultants Limited

♦ IAEA RS-G-1.7 (2004) states :

"It is usually unnecessary to regulate..." material containing radionuclides of natural origin at activity concentrations below 1 Bq/g for radionuclides in the uranium and thorium decay series and below 10 Bq/g for K-40.

Doses to individuals as a consequence of these activity concentrations would be unlikely to exceed about 1 mSv in a year "<u>excluding</u> the contribution from the emanation of radon"

5

SENES Consultants Limited

Objectives and Scope of Study

- IAEA decided to perform independent calculations to confirm or otherwise, that expected doses would be
 - *"unlikely to exceed about 1 mSv in a year <u>excluding</u> the contribution from the emanation of radon"*

The scope of the study was to provide calculations for human exposures potentially arising from a "generic" waste heap containing NORM

6

SENES Consultants Limited

Pathways Models

- Models range from simple to complex
- Data requirements depend on model
- Select model based on study objectives and level of analysis required

7

- Pathways modelling can be iterative

Study Assumptions

Assumptions:

- a nominal heap volume of 2 million m³ covering 10 ha (100,000 m²);
- either (or both) the radionuclides in the natural uranium (U-238) decay chain or the natural thorium (Th-232) decay chain are present in the heap materials at a concentration of 1 Bq/g;
- the mine waste heap could potentially be acid generating; and
- the models and assumptions of SRS 44 are to be used where possible.

The Approach (1)

- To consider reasonably available information from "real-world" examples of actual heaps that could be used to "benchmark" the hypothetical heap and seepage characteristics
- Define the characteristics of the hypothetical heap (in part from real world experience)

The Approach (2)

- Develop exposure pathways and dose assessment for the hypothetical waste heap building on SRS 44 models/assumptions
- Focus on Groundwater
- Discuss the likely doses arising to persons living in close proximity to such a heap.

Release From Heap Materials (1)

- The characteristics of waste heap sources are quite variable and are dependent on:
 - * the geological setting,
 - the specific uranium/thorium content of the raw materials
 - the effects of processing
- Radionuclides are leached as the mineralization dissolves in rainwater passing through the pile.

11

Release From Heap Materials (2)

- Radium may be dissolved and its solubility is controlled by sulphate levels.
- Uranium release from carbonate minerals is likely to be dominated by dissolution mechanism.
- Pb-210 and Po-210 levels tend to be below that of Ra-226.
- Releases can also be influenced by the pH and redox changes associated with oxidation

12

NORM VI

SENES Consultants Limited

Waste Rock **Physical Characteristics**

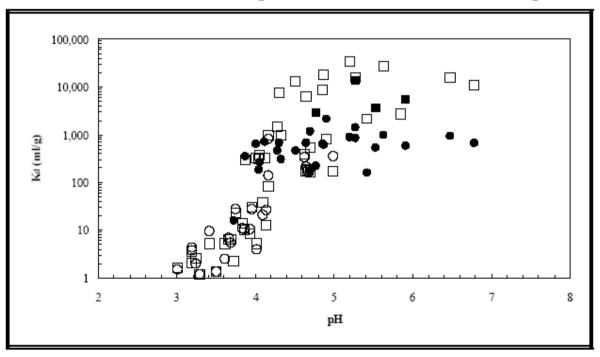
Waste rocks are characterized as:

- A having low moisture content,
- Iarge particle size (50% of the material in the pile) is greater than 10 cm)
- containing rocks and stones.

Leachate from Waste Rocks

14

- The range of radionuclide concentrations in leachate from waste heap materials:
- Source:
 - Key Lake uranium mine
 - Rabbit Lake uranium mine
 - Various non-uranium studies


radionuclides	Range of concentrations
U (mg/L)	0.01-13.8
Ra-226 (Bq/L)	0.02-5.5
Th-232 (μg/L)	0.01-0.1
Pb-210 (Bq/L)	0.025-8
Po-210 (Bq/L)	0.05-0.1

NORM VI

SENES Consultants Limited

Partition Coefficients

Field-derived K_d values for U-238 and U-235 plotted as a function of pore water ph for contaminated soil/pore water samples

Source: DOE/EPA 1999

Estimated Range of K_d Values for Uranium

K _d , ml/g	рН								
· `d', · · · · · 9	3	3 4 5 6 7 8 9 10							
Minimum	<1	0.4	0.25	100	63	0.4	<1	<1	
Maximum	32	5,000	160,000	1,000,000	630,000	250,000	7,900	5	

Source: DOE/EPA 1999

NORM VI	16	SENES Consultants Limited
6 th International Symposium – Marrakech, Morocco		30 Years of Environmental Excellence Worldwide

Estimated Range of K_d Values for Thorium

Thorium K_d values (ml/g) based on pH

K _d (ml/g)	рН: 3-5	pH: 5-8	pH: 8-10
Minimum	62	1,700	20
Maximum	6,200	170,000	2,000

Source: DOE/EPA 1999

Estimated Range of K_d Values for Lead

Soil Type	рН	K _d , ml/g
Sand	4.5	280
Sand	5	1,295
Sand	5.27	13,000-79,000
Medium sand	5.8	19
Sandy Loam	7.5	3,000
Sandy Loam	8	4,000
Fine sandy loam	8.7	59,000
Loam	7.3	21,000
Organic soil	5.5	30,000

Source: DOE/EPA 1999

SENES Consultants Limited

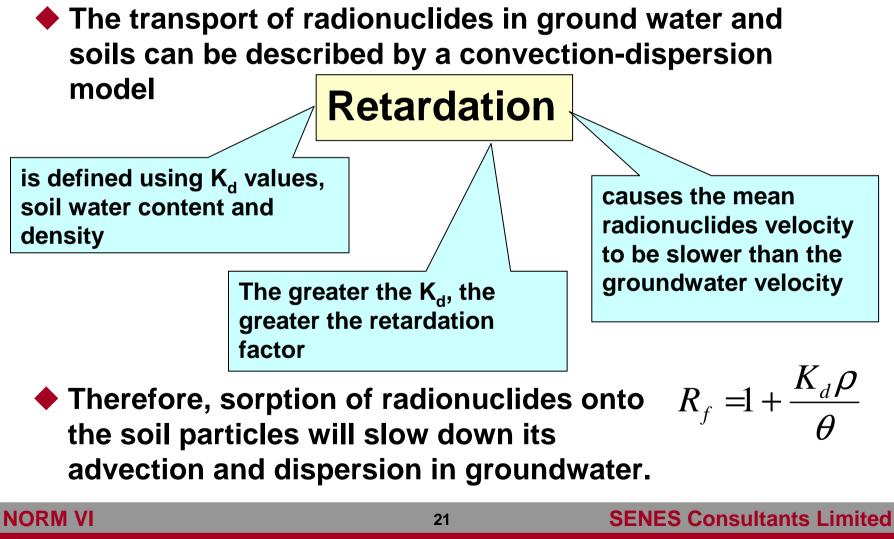
Partition Coefficients

Geometric Mean K_d values (ml/g)
 Provided by the RESRAD Data Collection

Radionuclide	Sand	Clay
Lead	270	550
Polonium	150	3,000
Radium	500	9,100
Thorium	3,200	5,800
Uranium	35	1,600

Source: Yu et al. 1993

Nominal Seepage From Waste Heaps


Waste Type	Typical NORM Waste Non-acidic	Typical NORM Waste Acidic
U and Th content		
-U ₃ 0 ₈ %	0.01	0.01
-Th-232% ¹	0.01	0.01
Leachate Quality		
-U (mg/L)	1	10 ¹
-Ra-226 (Bq/L)	1	1
-Th (mg/L)	<0.01	0.1
-Pb-210 (Bq/L) ²	0.2	1
-Po-210 (Bq/L) ²	0.05	0.1

Note 1- It is highly unlikely that a person would have an acidic water supply. Constituents such as pH, salinity, iron levels and metals would likely preclude the use of the water.

Note 2- Based upon seepage/groundwater monitoring data for a uranium mine

NORM VI	20	SENES Consultants Limited
6 th International Symposium – Marrakech, Morocco		30 Years of Environmental Excellence Worldwide

Transport in Groundwater

6th International Symposium – Marrakech, Morocco 30

Transport in Groundwater (1)

Case 1: White King uranium mine site in Oregon:

But

Pore water samples in the stockpile were over 10⁶ Bq/m³ Overburden, pore water immediately under the stockpile, activities were less than 670 Bq/m³

A reduction of more than 1000 The uranium appears to be quite immobile

Transport in Groundwater (2)

- Case 2: Groundwater migration from a tailings pile is the Nordic uranium tailings pile in Elliot Lake region of Ontario, Canada
- Uranium and radium migration from acid leachates is greatly retarded in the groundwater aquifer below the pile (Morin and Cherry (1981)

Dose Assessment (1)

- The pathway calculations based on the IAEA Safety Report Series No.44 (SRS 44)
- K_d values from RESRAD data for <u>sands</u> conservative (i.e., high) estimate of groundwater concentration

K_d values in following table estimated based on the leachate and waste concentrations cited in this study, are believed to represent the mine waste piles more realistically.

NORM VI

24

Dose Assessment (2)

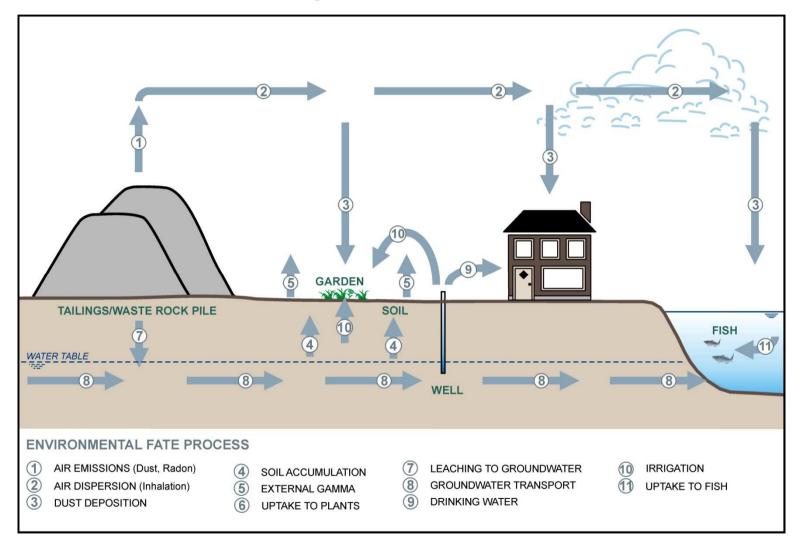
Suggested (literature this study) K_d values (ml/g)

Radionuclide	K _d (ml/g)
Lead	5000
Polonium	2000
Radium	1800
Thorium	1000
Uranium	50

NORM VI	25	SENES Consultants Limited
6 th International Symposium – Marrakech, Morocco		30 Years of Environmental Excellence Worldwide

Dose Assessment (3)

- Two dose assessment scenarios were performed in this assessment:
 - using RESRAD K_d values for sand, very conservative estimate
 - using K_d values proposed in this study, considered more realistic


26

SENES Consultants Limited

Pathways Considered

- The pathways considered in this assessment include:
 - inhalation of dust,
 - external exposure (from dust depositing on the ground at the residence),
 - ingestion of dust,
 - ingestion of garden and agricultural products
 - radon exposure,
 - structure of the str
 - surface water pathway.

Pathways Considered

28

NORM VI

6th International Symposium – Marrakech, Morocco

SENES Consultants Limited

Key Parameters (1)

- The K_d from the RESRAD data collection for sandy soil or from this study
- Inhalation and ingestion dose coefficients from ICRP 72
- Root transfer factors for irrigation of plants were taken from both IAEA TRS No.364 and CSA N288.1-08

Key Parameters (2)

- Freshwater-to-fish transfer factors from CSA N288.1-08 and other published sources
- The approach to estimating radon dose was based on UNSCEAR 2000

30

SENES Consultants Limited

Results of Pathways Calculations (U and Th <u>both</u> at 1Bq/g)

	Committed Effective Dose (mSv/a)					
Pathway	Proposed D Coeffic		Sand Distribution Coefficients			
	Child	Adult	Child	Adult		
Inhalation of Dust	3.4E-04	6.5E-04	3.4E-04	6.5E-04		
Ingestion of Dust	0.011	1.8E-03	0.011	1.8E-03		
External Exposure	5.6E-03	4.3E-03	5.0E-03	3.9E-03		
Ingestion of Garden and Agricultural Products	5.2E-05	2.7E-05	2.8E-04	1.0E-04		
Groundwater Pathway	0.24	0.19	1.3	0.74		
Surface Water Pathway (Consumption of Fish)	7.6E-05	3.9E-05	5.9E-04	2.5E-04		
Total	0.26	0.20	1.3	0.75		

NORM VI	31	SENES Consultants Limited
6 th International Symposium – Marrakech, Morocco		30 Years of Environmental Excellence Worldwide

U Series Dose by Pathway

	Comn	Committed Effective Dose (mSv/a)				
Pathway	Pathway Proposed Distribut Coefficients		Sand Distribution Coefficients			
	Child	Adult	Child	Adult		
Inhalation of Dust	1.3E-04	2.5E-04	1.3E-04	2.5E-04		
Ingestion of Dust	7.0E-03	1.2E-03	7.0E-03	1.2E-03		
External Exposure	2.5E-03	1.9E-03	1.9E-03	1.5E-03		
Ingestion of Garden and Agricultural Products	3.4E-05	2.1E-05	2.4E-04	9.4E-05		
Groundwater Pathway	0.16	0.15	1.1	0.67		
Surface Water Pathway (Consumption of Fish)	4.7E-05	2.7E-05	5.5E-04	2.4E-04		
Total	0.17	0.15	1.1	0.67		

32

6 th International Sy	/mposium – Marrakech, Morocco

NODAW

SENES Consultants Limited

Groundwater Dose by Radionuclide (U-238 and TH-232 Series)

	Dose, mSv/a					
Radionuclide	Proposed Di Coeffic		Sand Distribution Coefficients			
	Child	Adult	Child	Adult		
U	7.05E-02	9.27E-02	1.01E-01	1.32E-01		
Th-230	5.65E-03	1.01E-02	1.77E-03	3.17E-03		
Ra-226	1.06E-02	1.08E-02	2.65E-02	2.70E-02		
Pb-210	9.93E-03	6.66E-03	1.84E-01	1.23E-01		
Po-210	6.07E-02	2.90E-02	8.09E-01	3.86E-01		
Th-228	1.42E-02	6.61E-03	4.44E-03	2.07E-03		
Th-232	6.21E-03	1.11E02	1.94E-03	3.47E-03		
Ra-228	6.29E-02	2.66E-02	1.57E-01	6.66E-02		
Total	0.24	0.19	1.3	0.74		
Total (Only U-238)	0.16	0.15	1.1	0.67		
Total (Only Ra-226, Pb-210, Po-210)	0.081	0.046	1.0	0.54		
IORM VI 33 SENES Consultants Limi						

6th International Symposium – Marrakech, Morocco

Discussion (1)

- Waste heaps have widely varying characteristics
- Diluted leachate may be used indvertently as a drinking water source
- Unlikely to drink acid seepage because of taste, colour and general poor water quality
- Other exposure pathways are also possible

Discussion (2)

- Results of dose assessment vary depending on pathways considered, model used and assumptions (i.e., involves judgement)
- For "realistic" scenarios, doses are likely to be below 1 mSv/y

Human Exposure To Mine Waste Heaps - March 23, 2010

Questions?

NORM VI

36

SENES Consultants Limited

6th International Symposium – Marrakech, Morocco