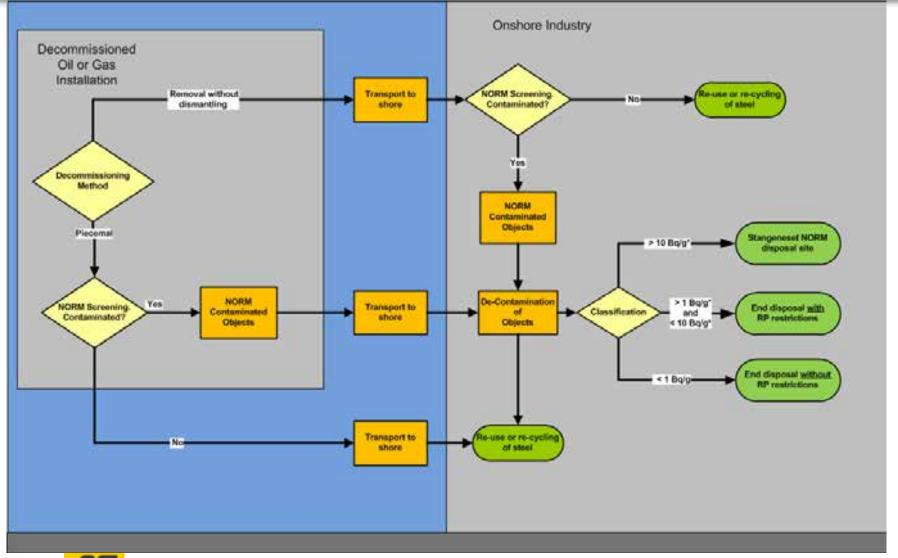
Measurement of NORM Waste from decommissioning of petroleum installations

Bjørn Smits AF Decom Offshore AS Per Varskog Zpire Ltd

Contact info:

bjorn.smits@afgruppen.no



per.varskog@zpire.no

EAN_{NORM} – NORM in Oil and Gas Industry, Dresden, 07.12.12

Decommissioning NORM Waste Streams

Decommissioning Key Concerns (NORM related)

- A successful decommissioning project is dependent on proper identification, handling and end disposal of all waste (NORM included).
- Aboard disused petroleum installations NORM is often present as a contaminant on the inner surfaces of the production equipment.
- The NORM waste is often mixed with other hazardous substances (e.g. hydrocarbons, HMs including Hg, asbestos).
- Large practical challenges related to carrying out the work offshore:
 - Lack of infrastructure
 - Weather
 - Logistics
 - HSE
 - Handling and disposal of mixed waste

NORM Issues in Decommissioning

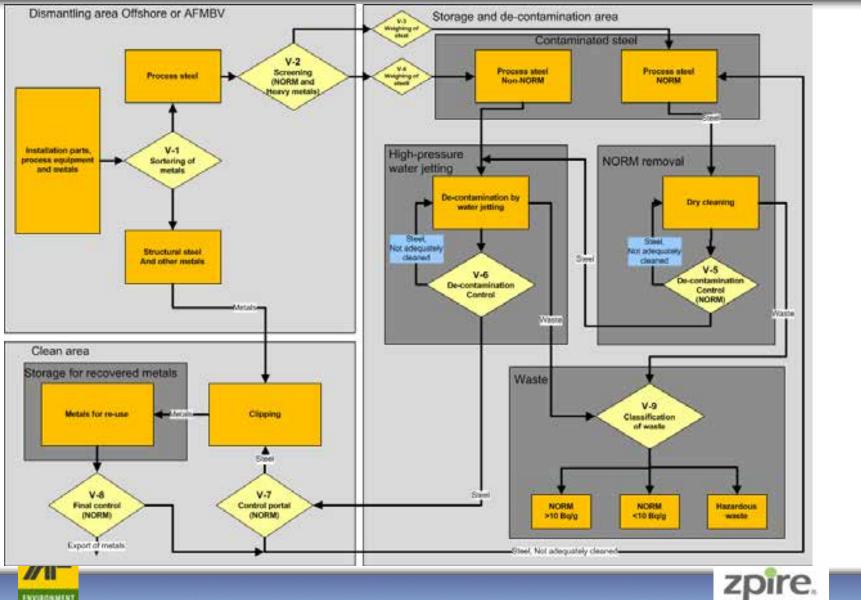
NORM issues include:

- Identification and quantification
- Removal of NORM contaminated components and vessels
- Transport
- De-contamination and storage
- End disposal
- Trans-boundary issues
- Radiation protection

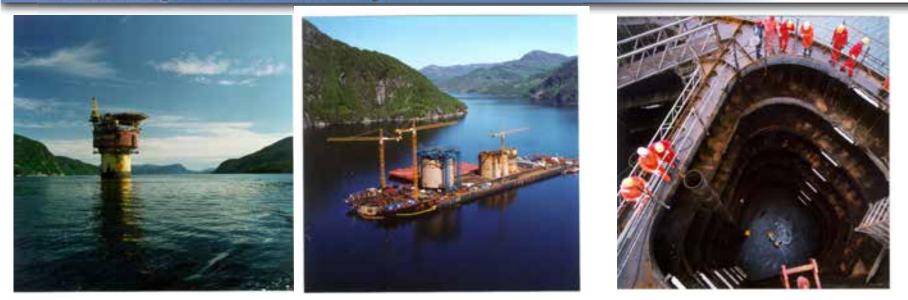
Ekofisk 2/4T topside removal by AF Decom

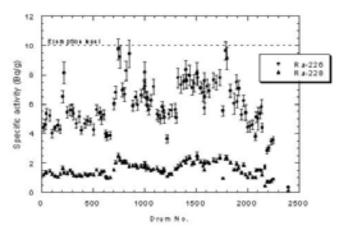
- 25 000 tons of steel removed
- 300 000 hours offshore work
- HSE: no injuries
- Completed in 19 months

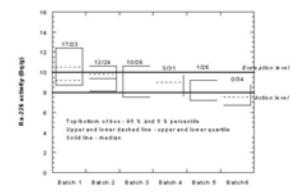
AF Decom Environmenal Base Vats (AFEBV)



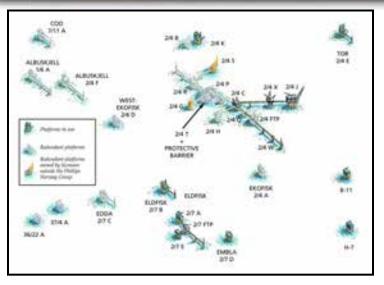
Dismantling work at AFEBV






Mass Flow at AFMBV

NORM in Decommissioning Example: Brent Spar



NORM in Decommissioning Example: Ekofisk

Installation	NORM Occurrence	NORM amounts		
		tons		
Cod 7/11A	Not found	none		
	Production Header (W),	0.1 - 4		
Albuskjell 1/6A	Separators			
	Production Header (W),	0.1 - 4		
Albuskjell 2/4F	Separators			
Edda 2/7C	Not found	none		
Tommeliten module	Not found	none		
West Ekofisk 2/4D	Pig launcher Unit	0.2		
Ekofisk 2/4R	Possible TENORM in Ula line	1 (if present)		
Booster 36/22A	Not found	none		
Booster 37/4A	Not found	none		
Papa 2/4P	Export pipe	1 - 2.6		
Tank topside 2/4T	Oil metering, Export pipe to Papa	3		
Total		5.4 – 14.8		
Mean value		0.5 - 1.3		

New classification method based on handheld instruments and sampling

The method combines the swiftness and cost efficiency of handheld measurements with the accuracy and reliance of sampling and analysis

Matrix:

Fairly uniform waste containing rust and scale
Practically no Ra-228 due to age
Known origin – easy to include Pb-210

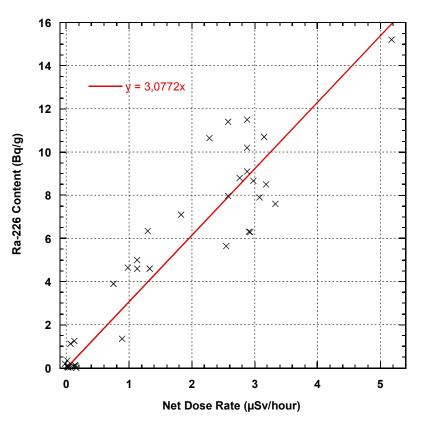
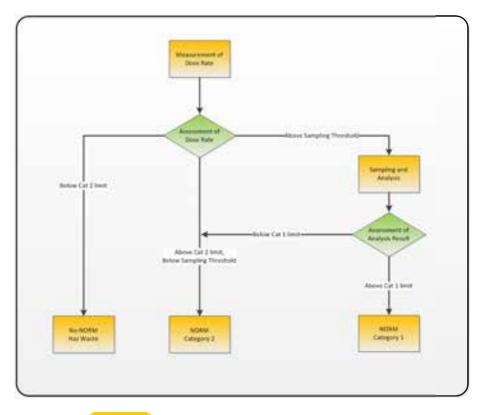


Fig 1: Plot of Net Dose Rate vs. Ra-226 Content for NORM-containing waste drums from the EPRD project at AF Decom Environmental base Vats (linear regression: Forced Zero, n = 57, r-square = 0.88)


New method: Implementation

Procedure:

- 1. Drum is measured on two sides using a dose rate meter
- 2. Mean value is compared with the classification matrix
- 3. Measurement < 0.2 µSv/h: non-radioactive

ENVIRONMENT

- 4. Measurement > 0.2 μ Sv/h and < 1.7 μ Sv/h : NORM Cat II
- 5. Measurement > 1.7 μ Sv/h: sample taken and analysed

(xSv/hour)	Calculated Activity Concentration (Bg/g)			· · · · · · · · · · · · · · · · · · ·	
	1148.8	18 Ra	1996	Sum	Classification/Action
0,1	0,3	0,0	0,2	0,5	
0,2	0,6	0,0	0,3	0,9	Category 2 limit
0,3	0,9	0,0	0.5	1,4	
0,4	1.2	0,0	0,6	1.9	
0,5	1,5	0,0	0,8	2,3	
0,6	1,8	0,0	0,9	2,8	
0,7	2,2	0,1	1,1	3,3	
0,8	2,5	0,1	1,2	3,2	
0,9	2,8	0,1	1,4	4,2	
1,0	3,1	0,1	1.5	4,7	
1,1	3,4	0,1	1,2	5,1	
1,2	3,7	0,1	1,8	5,6	
1,3	4,0	0,1	2,0	6,1	
1,4	4.3	0,1	2,1	6.5	
1.5	4,6	0,1	2.3	7,0	
1.6	4,9	0,1	2,4	7.5	
1,7	5,2	0,1	2,6	7,9	Sampling threshold
1.9	5,5	0.1	22	8,4	
1,9	5,8	0,1	2,9	8,8	
2.0	6.2	0.1	3.0	9,3	
2,1	6.5	0,2	3,2	9,6	Category 1 limit
2,2	6,8	0.2	3.3	10.2	
2.3	7,1	0.2	35	10,7	
2,4	7,4	0.2	3,6	11,2	
2.5	2,7	0.2	3.8	11.6	
2,6	8,0	0.2	3.9	12,1	
2,7	8.3	0,2	4.1	12,6	
2,8	8,6	0.2	4.2	13.0	
2,9	8,9	0,2	4,4	13,5	
3,0	9,2	0.2	45	14,0	
3.1	9.5	\$.0	4.7	14,4	
3.2	9.8	0.2	4.8	14,9	
3,3	10,2	0.2	5.0	15,4	
3.4	10,5	02	5.1	15.8	
3.5	10,8	0.3	5.3	16,3	
	Category 2 limit :				ution level
	pling Threshold :				
	Category 1 limit :				

Table 2: Calculation of the concentrations of ²²⁸Ra, ²²⁸Ra, ²²⁸Ra, ²²⁸Pb and the sum of the three based on the calculation data given in Table 1. The three classification and action limits are given at the bottom of the table.

Decommissioning: No. of installations

Norway					
Туре		Total			
	2000 - 2005	2005 - 2010	2010 - 2015	2015 - 2020	2000-2020
Steel jacket	5	8	10	12	35
Floaters			2	1	3
FPSO	1		1	1	3
Concrete		2	1	4	7
base					
Total	6	10	14	18	48

Source: Ministry of Petroleum and Energy

	No. of installations						Total	
Туре	2007-	2010-	2015-	2020-	2025+	2007-		
	2010	2015	2020	2025		2020		
LS&C	4	3	13	7	18	20	45	
Small	15	54	90	45	34	159	238	
Steel								
Subsea	33	41	38	8	16	112	136	
Other	4	8	16	10	5	28	43	
Total	56	106	157	70	73	319	462	

Source: Oil & gas UK

