A fully automated gamma-ray spectrometer for NORM characterization

G. Xhixha; G. P. Bezzon; C. Broggini; G. P. Buso; A. Caciolli;

I. Callegari; L. Carmignani; T. Colonna; G. Fiorentini; E. Guastaldi;

M. Kaçeli Xhixha; F. Mantovani; G. Massa; R. Menegazzo; L. Mou;

A. Pirro; C. Rossi Alvarez; V. Strati; A. Zanon

Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1- 44122 Ferrara, Italy e-mail: xhixha@fe.infn.it

5th Workshop of the EAN_{Norm}
December 4th - 6th 2012 Dresden, Germany

Summary

 NORM residues generation and NORM issue – a global overview

The worldwide NORM production and a fully automated

gamma-ray spectrometer for their characterization

G. Xhixha · G. P. Bezzon · C. Broggini · G. P. Buso · A. Caciolli · I. Callegari · S. De Bianchi · G. Fiorentini · E. Guastaldi · M. Kaceli Xhixha ·

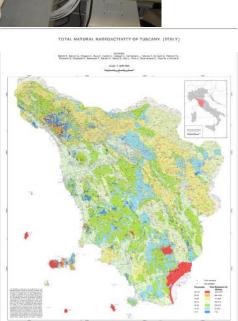
F. Mantovani · G. Massa · R. Menegazzo · L. Mou · A. Pasquini C. Rossi Alvarez · M. Shvti

Radioand Nucl Chem

DOL10 1009/8 0967-012-1791-1

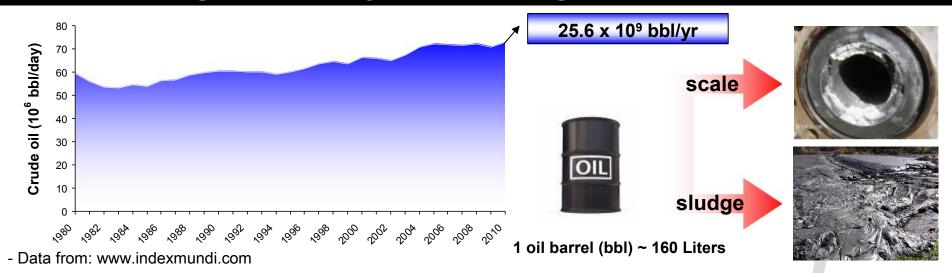
MCA_Rad system – a fully automated

gamma-ray spectrometer


 Efficiency calibration of MCA_Rad system using standard point sources

certified reference materials

Akadémiai Kiadé, Budapest, Hungary 2012


Energy [keV] Validation of efficiency calibration using

Doi:10.1007/s10967-012-1791-1

Oil and gas industry - residues generation worldwide

Rough estimation on NORM residues generated globally from oil industry.

	Generation rate per oil barrel (bbl) produced	Residues estimation (2010)	
Produced water	300 ÷ 900(USA)a % (water cut of 75% ÷ 90%(USA))	8 x 10 ¹⁰ bbl/yr	
Scale	3 b %	7 x 10 ⁸ t/yr	
Sludge	0.01ª %	3 x 10 ⁶ t/yr	

^a Source: http://www.epa.gov/rpdweb00/tenorm/oilandgas.html.

b Estimated considering that in 2010 in USA were recorded 519569 oil producing wells (Source: \tani/\estarbasee\text{passebook} \text{therist} \text{DA values of the measurement.}

NORM issue in oil extraction process 4.468 Gyr crude oil Chemistry injected water 234 Pa 2197 235 Kyr Radium (Ra) is an alkaline earth metal (Ba, Sr, Ca) Produced water conc. 24.10 d moderately soluble in ²³⁰Th $0.002 - 1200 \, \text{Bg/l}$ water (+2 oxidation state). host rock 75.38 Kyr ²³⁸ U ²³² Th oil deposit 14.05 Gyr ²²⁶ Ra formation water ²²⁸ Ra 222Rn 5.75 yr 6.15 h 1.913 yr Produced water conc. 3.824 d ²²⁴Ra 3.66 d 0.3 - 180 Bq/I™Rr Oil field equipments contaminated with scale

3.053 m

The conc. of ²²⁶Ra and ²²⁸Ra in produced water depend mainly on:

- Insolubility in sulfate and carbonate
- Salinity (cation conc.) of the solution
- Grain size and the total surface area
- Temperature
- U and Th concentration of host rock

	²²⁶ Ra	²²⁸ Ra	
	10 ⁴ (Bq/kg)	10 ⁴ (Bq/kg)	
Scale	0.00008 - 1500	0.00001 - 280	
Sludge	0.0005 - 350	0.00007 - 205	

and scale-bearing sludge:

Doi:10.1007/s10967-012-1791-1

^{*} Xhixha et al., 2012. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nuc. Chem.

Coal combustion - residues generation worldwide

Rough estimation on NORM residues generated from coal combustion (CCP)

	Generation rate during coal combustion*	Residues estimation (2010)		
fly-ash	8.4 %	6 x 10 ⁸ t/yr		
bottom ash/ boiler slag	3.6 %	2.5 x 10 ⁸ t/yr		

on coal
consumption for
2035 show an
increase
tendency of of
fly ash
generation up to
7.5 x 108 t/yr.

The projection

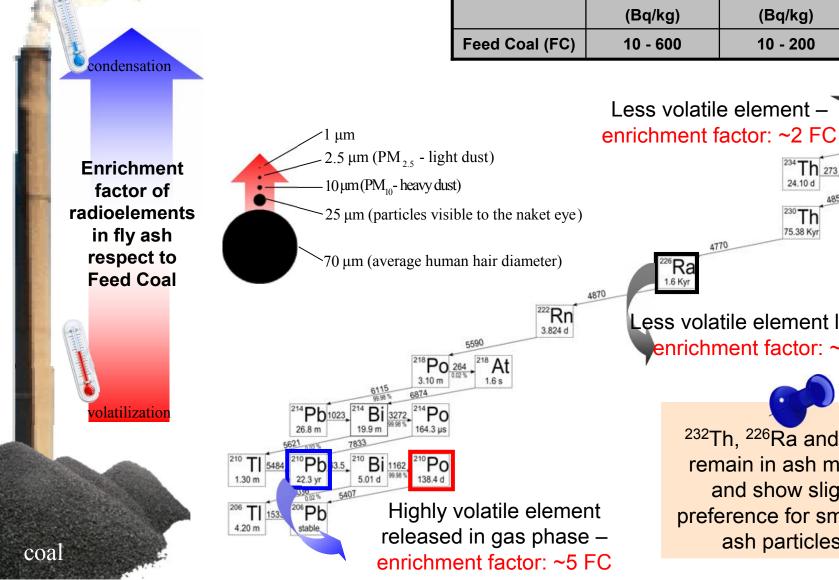
^{*} The % waste/by-product generation was calculated for an average 12% ash containing coal, from which 70% is generated as fly ash and 30% as bottom ash and boiler slag*

- EU CCP accounts for ~ 10% of global CCP
- In 2009, CCP ~ 5.2 x 10⁷ tons

Recycled in construction industry#

- 48% of fly ash
- 45% of bottom ash

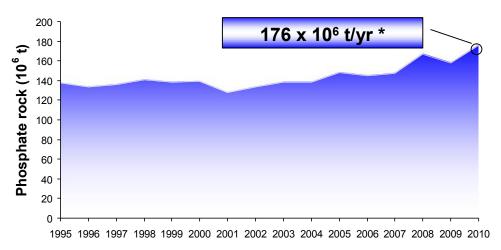
^{*} Xhixha et al., 2012. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nuc. Chem. Doi:10.1007/s10967-012-1791-1


[#] Data from European Coal Combustion Products Association: http://www.ecoba.com/

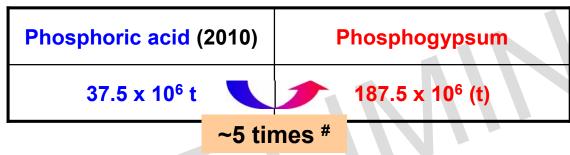
NORM issue in coal combustion process

about 2-5% fly ash is released in air

The partitioning between gas and solid is controlled by the volatility and chemistry of the individual elements.


	²³⁸ U	²³² Th	
	(Bq/kg)	(Bq/kg)	
Feed Coal (FC)	10 - 600	10 - 200	

Less volatile element like ²³²Thenrichment factor: ~1.5 FC


> ²³²Th, ²²⁶Ra and ²³⁸U remain in ash matrix and show slight preference for small fly ash particles.

Phosphoric acid production – residues generation

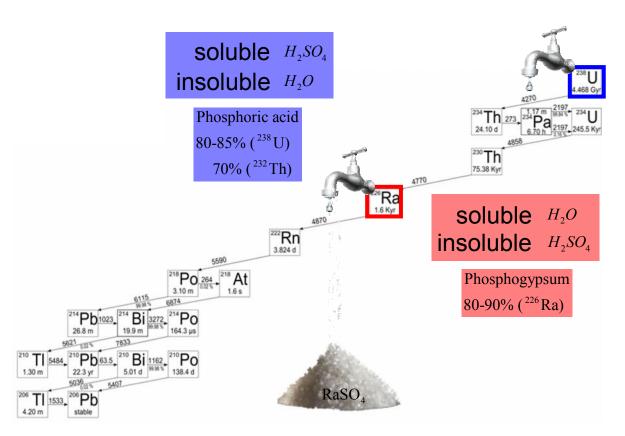
* Data from USGS

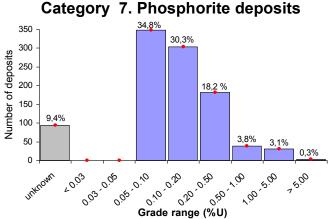
Rough estimation on NORM residues generation during dihydrate phosphoric acid production.

Phosphogypsum is mainly recycled:

- · in agriculture for soil remediation
- in construction industry, in particular in cement production.

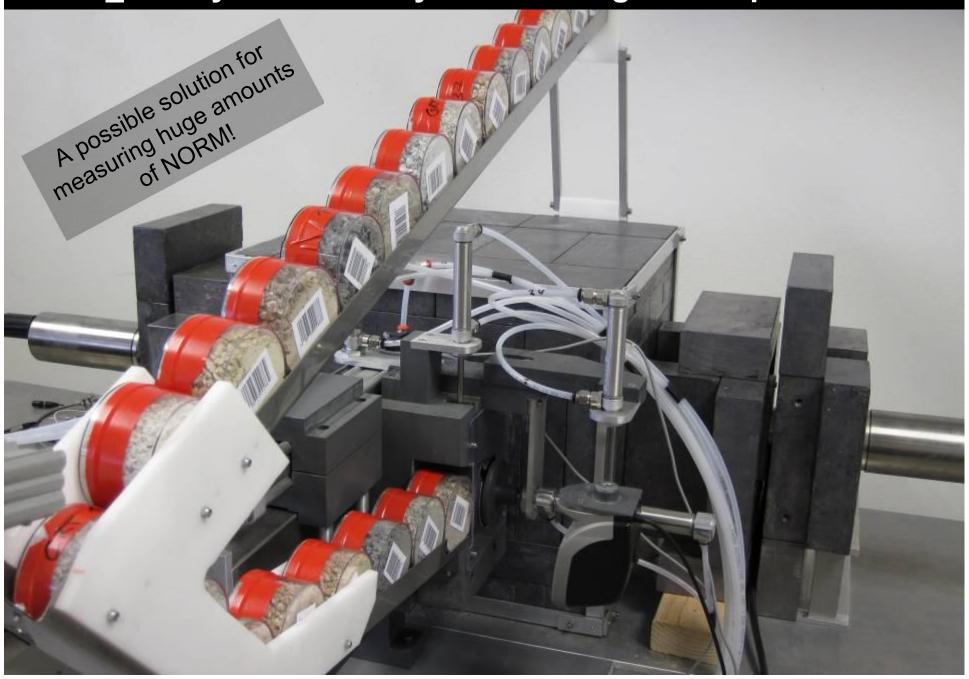
Phosphoric acid production dihydrate process Sulphuric Phosphate Water acid rock Attack tanks Dihydrate filter 25-30% P₂O₅ Phosphogypsum evaporation $(CaSO_4 \cdot 2H_2O)$ Phosphoric acid


Approximately 90% of worldwide phosphoric acid is used in phosphate fertilizer production industry.


^{*}Xhixha et al., 2012. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nuc. Chem. Doi:10.1007/s10967-012-1791-1

NORM issue in phosphoric acid production

The average content of 238 U in phosphate rocks is often in the range $30-200 \mu g/g$ (0.003-0.020%) max. up to 800-1000 $\mu g/g$.

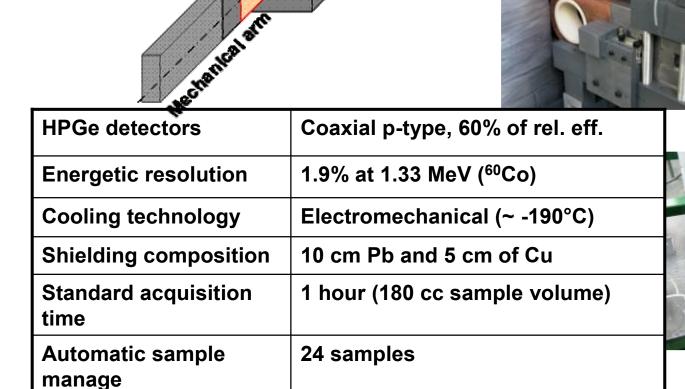


World uranium resources in phosphate rock are estimated at approximately 9 ÷ 22 x 10⁶ tons.

The activity concentration of ²³⁸U and ²²⁶Ra in in phosphogypsum are typically found to be respectively in the range < MDA – 450 Bq/kg* and 30 – 1350 Bq/kg*.

^{*}Xhixha et al., 2012. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nuc. Chem. Doi:10.1007/s10967-012-1791-1

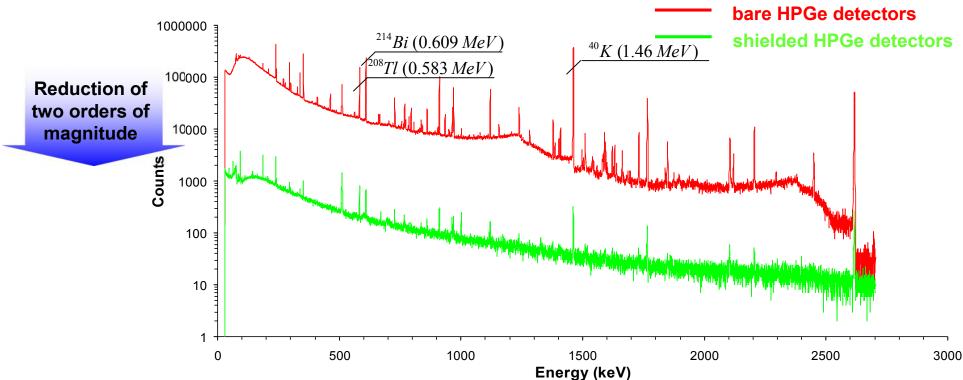
MCA_Rad system – a fully automated gamma spectrometer



Design and features of MCA_Rad system

Improvements:

- enhancement of measures quality
- background reduction
- automation of processes



Cu

Pb

HPGe

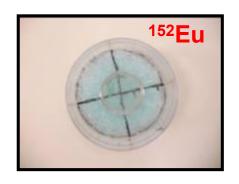
Background characterization of MCA_Rad system

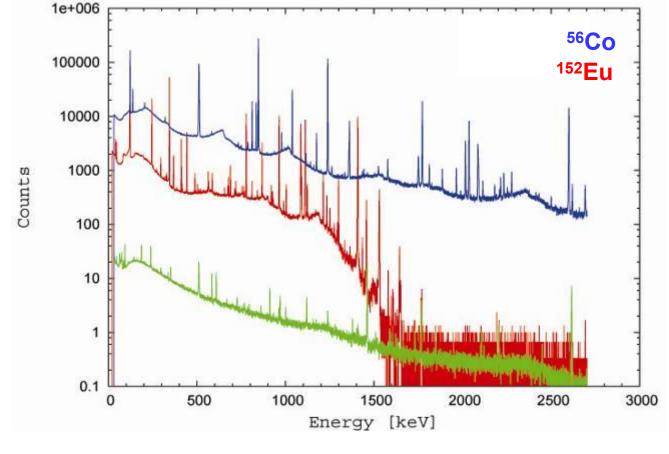
Estimation of Minimum Detectable Activity (MDA) for a typical 1 hour background spectra.

$$MDA = \frac{3 + 4.65\sqrt{B}}{\varepsilon I_{\gamma} t}$$

for 95% confidence interval.

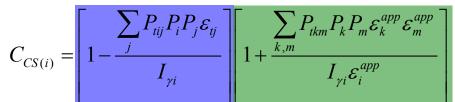
Isotope		E (keV)	MDA (Bq)	
	^{234m} Pa	1001	22.2	
238U	²¹⁴ Pb	352	0.5	
	²¹⁴ Bi	609	0.5	
²³² Th	²²⁸ Ac	911	0.9	
	²¹² Pb	239	0.5	
	²⁰⁸ TI 583		0.7	
⁴⁰ K		1460	5.5	

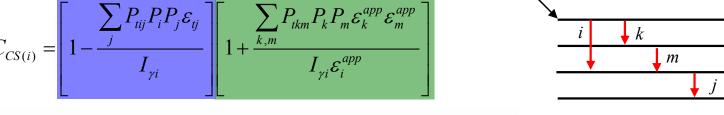

MCA_Rad system: efficiency calibration

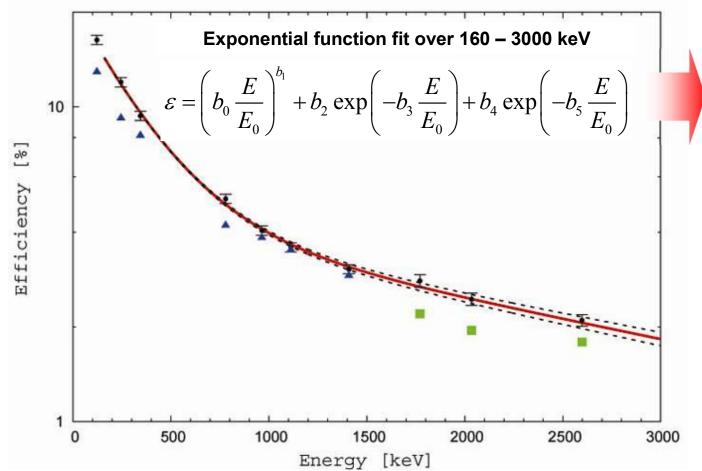

Efficiency calibration using standard point sources of complex decay scheme: ¹⁵²Eu (unc. 1.5%) and ⁵⁶Co.

Coincidence summing (C_{CS}) Geometrical (C_G) Self absorption (C_{SA})

standard point sources





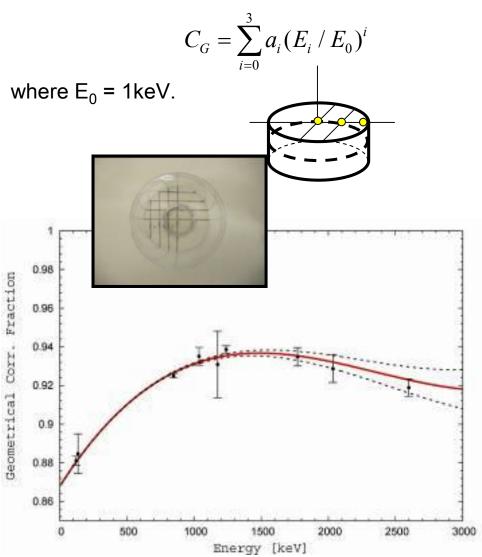

Xhixha et al., 2012. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nuc. Chem. Doi:10.1007/s10967-012-1791-1

Coincidence summing correction

Coincidence summing correction (C_{CS}) of (i) events takes into account the summing out (j) and summing in (k,m) and effects:

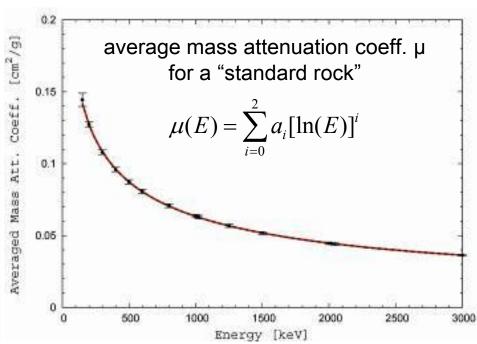
b_0	1.38
b ₁	1.41
b_2	22.97
b_3	5.43
b ₄	6.61
b ₅	0.44

Before correction


- ¹⁵²Eu
- 56**C**O

After correction

¹⁵²Eu, ⁵⁶Co

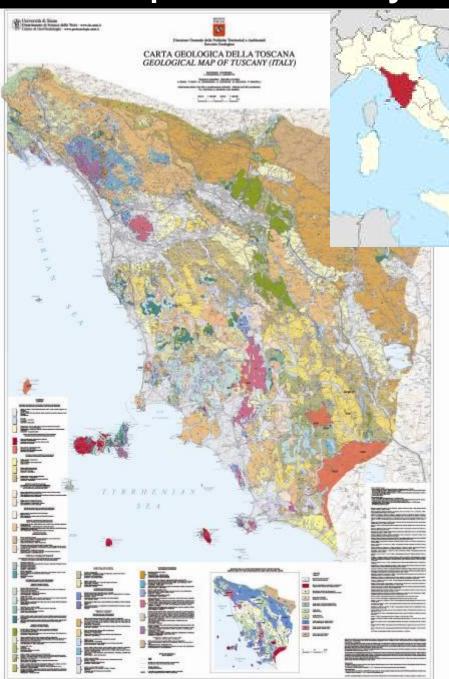

Geometry and self absorption correction

Geometrical correction (C_G): moving the standard point source in three positions (for three planes) we calculate the C_G for different energies (E_i) fitting the expression.

Self absorption correction (C_{SA}): averaging the mass attenuation coeff. μ for a "standard rock" with density ρ , we calculated the C_{SA} for the sample thickness t = 4.5 cm using the simplified approach:


$$C_{SA} = \frac{1 - e^{-(\mu_{s}\rho_{s} - \mu_{ref}\rho_{ref})t}}{(\mu_{s}\rho_{s} - \mu_{ref}\rho_{ref})t}$$

For different rock forming minerals the average μ is estimated with a standard deviation of less than 2% (200 – 3000 keV).


Validation test using certified IAEA ref. materials

Certified IAEA reference materials (in secular equilibrium).

	Data certified by IAEA	MCA_Rad system results			
Ref. material	A (Bq/kg)	Isotope	Energy (keV)	A (Bq/kg)	
IAEA_RGU_1	4940 ± 40	^{234m} Pa	1001	4875 ± 87	
		²¹⁴ Bi	609	4872 ± 73	
		²¹⁴ Pb	352	4773 ± 72	
IAEA_RGTh_1	3250 ± 90	²²⁸ Ac	911	3092 ± 47	
		²¹² Pb	239	3246 ± 49	
		²⁰⁸ TI	583	3342 ± 50	
IAEA_RGK_1	14000 ± 400	⁴⁰ K	1460	14274 ± 241	

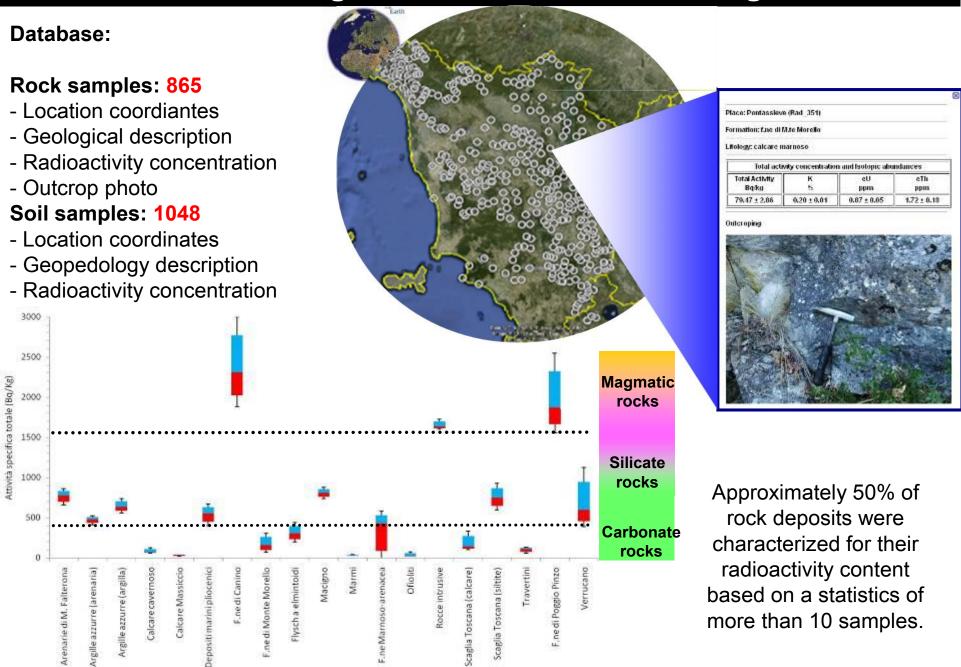
Map of radioactivity content of Tuscany territory

During 2009-2011 we realized the first survey of natural radioactivity in Tucany Region (Italy).

The sampling strategy was based on the radioactivity characterization of 43 geological groups identified in the geological map of Tuscany at scale 1:250,000.

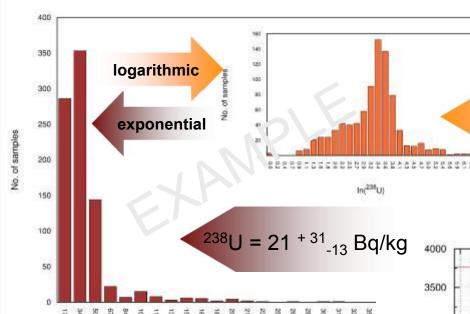
Total samples: 1913

- Rock samples: 865


- Soil samples: 1048

• Sampling days: 92

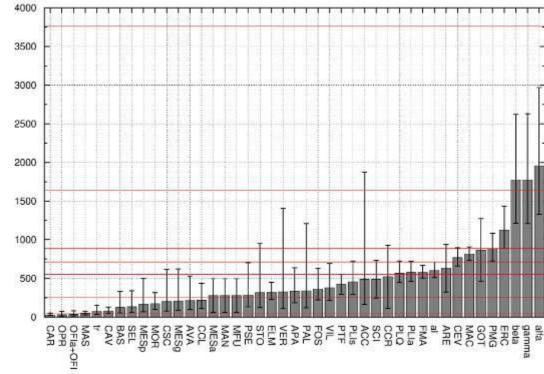
Mean sample distribution ~12 km²



First result – webgis database based on GoogleEarth®

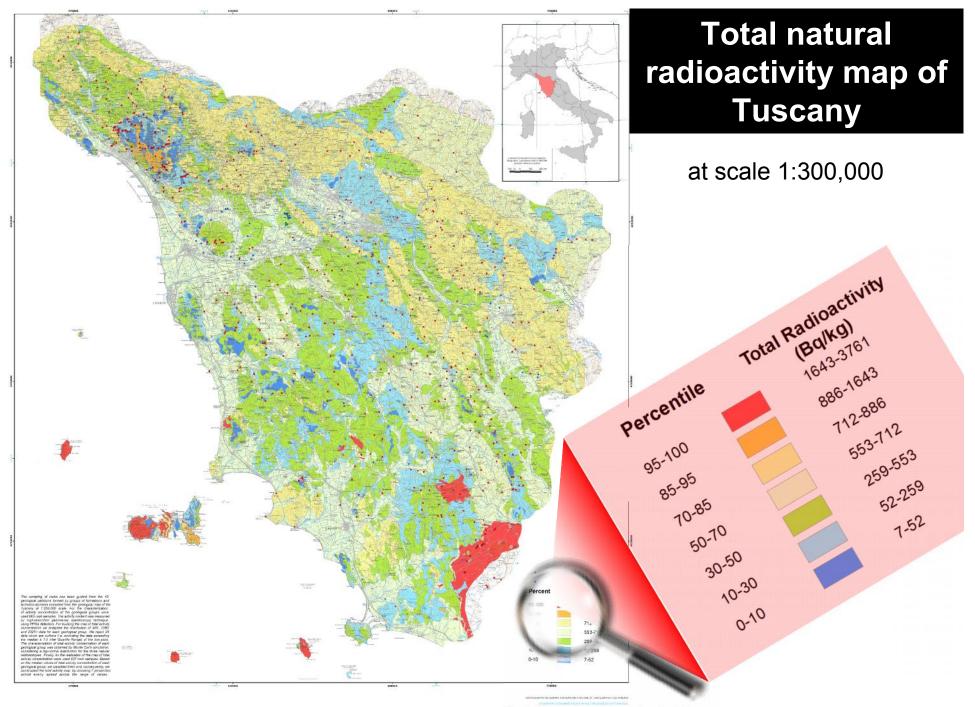
Mapping the natural radioactivity – statistical analysis

Total activity (Bq/kg)


Based on high statistics (865 rocks samples) we characterized 43 geological groups (1:250,000) by considering log-normal distributions

 $ln(^{238}U) = 3 \pm 0.9$

Note that considering a Gaussian distribution loose information on distribution tails:

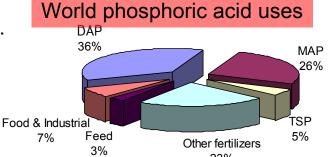

$$^{238}U = 32 \pm 42 \text{ Bq/kg}$$

The total natural radioactivity map was represented as the geological classification based on data percentiles chosen on order statistics: 10%, 30%, 50%, 70%, 85%, 95% and 100%.*

*Callegari et al., 2012. Total natural radioactivity map of Tuscany (Italy). Submitted to J. Maps.

Geological formations

Callegari et al., 2012. Total natural radioactivity map of Tuscany (Italy). Submitted to J. Maps.


Measurements on fertilizers using MCA-Rad system

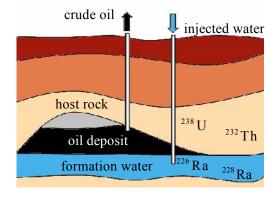
Fertilizers are generally labeled with the macronutrients N, P, K.

DAP is diammonium phosphate (NP);

MAP is monoammonium phosphate (NP) and

TSP is triple supper phosphate (P).

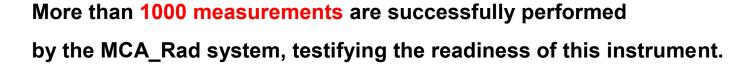
By measuring 1h different fertilizers it was possible to observe the secular disequilibrium between ²³⁸U (measured using ^{234m}Pa) and ²²⁶Ra (measured using ²¹⁴Bi).

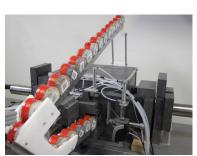

Fertilizer type	Country	Nr. samples	⁴⁰ K (Bq/kg)	²²⁶ Ra (Bq/kg)	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)
NK (13-0-46)	Israel	1	12557 ± 77	<3	n/a	<4
NCa (15-0-0)	South Africa	1	<4	6 ± 1	<115	<2
NPK (12- 12 -17) granular	Belgium Italy	3	4098 ± 199	80 ± 56	595 ± 184	14 ± 9
NPK (5- 15 -30) granular	Italy	1	7646 ± 63	253 ± 5	<522	20 ± 5
NPK (20- <mark>20</mark> -20) crystalline	Belgium Italy	3	5388 ± 493	<2	<469	<4
MAP (11- 48 -0)	n/a	2	35 ± 9	627 ± 22	918 ± 62	13 ± 4
DAP (18- 46 -0)	Italy	2	146 ± 140	79 ± 77	850 ± 70	44 ± 6

Values expressed as "<" corresponds to the MDA values of the measurement.

Conclusions

Huge amount of NORM residues are generated globally, and need characterization for:


- public and worker health protection,
- storage
- transport
- recycling



The complexity of the chemical and industrial processes together with the natural variability of radioactivity doesn't permit to generalize the NORM issue.

We realized the MCA_Rad system, which has the following characteristics:

- manage autonomously up to 24 samples,
- measure low sample quantity, maximum up to 180 cc,
- accurate efficiency calibration, validated less than 5%.

