

Faire avancer la sûreté nucléaire

Measurement strategies in coal-fired power plants to meet the demands of French legislation

European ALARA Network for NORM Dec. 4th - 6th 2012

Contents

- French Ministerial Order of May 25th, 2005
- IRSN missions
- Measurement strategy for coal-fired power plants:
 - Sources and pathways of exposure
 - Nuclides of choice
 - Sampling and Analysis
- Results and feedback:
 - Analysis results
 - Dose assessment
 - Feedback

French ministerial Order of may 25Th, 2005

- Evaluation of occupational exposure
- Evaluation of population exposure
- 10 relevant industrial activities
 - several activities like mining excluded
- Studies carried out under the operator responsibility
- Results addressed to ASN and IRSN

French ministerial Order of may 25Th, 2005

Mandatory content of survey:

- Description of production site, process and raw material,
- Radiological characterization of raw material, final and by-products, wastes and effluents,
- Identification of workplaces liable to NORM impact,
- Dose assessment for workers.

IRSN Missions

- Support and technical assistance to the public authorities for civil activities:
 - → Synthesis of studies carried out in the framework of French Ministerial Order of May 25TH, 2005.
- Contractual studies and measurement services for public and private organizations:
 - → NORM studies in the framework of French Ministerial Order of May 25TH, 2005.

Measurement strategies for coal-fired power plants

Sources and pathways of exposure

- Clinker: external exposure,
- Coal, ashes and soot: external and internal (inhalation, ingestion),
- Wash water and gaseous effluents: potential public exposure,
- Radon: internal exposure.

Measurement strategies

- Dose rate measurements supplemented by passive dosimetry to assess external exposure,
- Short term potential-alpha energy assessment and 2 month integrating measurements for radon 222,
- In-situ gamma spectrometry with Hp-Ge detector,
- Sampling based on gamma spectrometry results to carry out laboratory analysis.

Measurement strategies: sampling

- Coal clinker and soot sampled in standardised geometry:
 - SG500 polyethylene bottles,
- Washwater:
 - 3 liters polyethylene bottles,
- Airborne ashes sampled in standardised geometry :
 - B132 filters in cellulose fiber 1,2 m³/h aerosol sampler

Measurement strategies: Nuclides

- Uranium 238 decay chain :
 - ²³⁸U, ²²⁶Ra and ²¹⁰Pb if secular equilibrium is reached, + ²³⁴U in water,
 - ²³⁰Th, ²³⁴U and ²¹⁰Po outside of secular equilibrium.
- Thorium 232 decay chain:
 - ²³²Th, ²²⁸Ra and ²²⁸Th,
- Uranium 235 decay chain :
 - based on uranium 238 decay chain,
- Potassium 40

Measurement strategies: Analysis

- Uranium 238 decay chain :
 - gamma spectrometry to quantify ^{234m}Pa, ²²⁶Ra and ²¹⁰Pb,
 - Alpha spectrometry for ²³⁴U, ²³⁰Th and ²¹⁰Po if needed(*).
- Thorium 232 decay chain:
 - Gamma spectrometry to quantify ²²⁸Ac, ²¹²Pb and ²⁰⁸Tl,
 - Alpha spectrometry to quantify ²³²Th and ²²⁸Th if needed(*).
- Uranium 235 decay chain :
 - gamma spectrometry to quantify ²³⁵U,
- Gamma spectrometry to quantify 40K
- (*) if equilibrium is not reached or detection threshold is too high

Results and feedback: analysis (1)

- Radon < 40 Bq.m⁻³ and EAP < 10 µJ.m⁻³ in all facilities
- Only gamma spectrometry both in-situ and in laboratory has been carried out
- Ashes and soot

	^{234m} Pa	²²⁶ Ra	²¹⁰ Pb	235U	²²⁸ Ra	²⁰⁸ TĮ	⁴⁰ K
Activity Bq/kg	< 130 - 150	< 89 - 170	71 - 110	6 - 7	41 - 94	12 - 32	120 - 210

Results and feedback: analysis (2)

Coal originating from Colombia, Venezuela, South Africa, Norway and Island

	^{234m} Pa	²²⁶ Ra	²¹⁰ Pb	²³⁵ U	²²⁸ Ra	²⁰⁸ Tl	⁴⁰ K
Activity Bq/kg	< 85	< 50	< 8 - 15	< 4	< 3 - 12	0,85 - 4	12 - 37

Clinker

	^{234m} P a	²²⁶ Ra	²¹⁰ Pb	235U	²²⁸ Ra	²⁰⁸ Tl	⁴⁰ K
Activity Bq/kg	< 77 - 120	< 36 - 150	9 - 77	< 4 - 6	< 4 - 100	2 - 36	60 - 170

Results and feedback: dose assessment

- Hypothesis for internal exposure (inhalation and ingestion)
 - measurement of dusts level in the facility,
 - secular equilibrium + highest specific activity,
 - no protection.
 - quantity of dust ingested = quantity of dust inhaled.
 - accidental exposition : dust level = 5 g.m⁻³ and 1 hour exposition

	External exposure in µSv.y ⁻¹	Internal exposure in µSv.y ⁻¹	Effective dose in µSv.y ⁻¹	Accidental exposure in µSv
Boiler operator	1 - 27	16 - 73	18 - 93	48 - 174
Service engineer	4 - 20	4 - 50	18 - 71	

Feedback

- Dose assessment has been done with penalizing hypothesis:
 - high detection treshold,
 - secular equilibrium based on highest specific activity
- Viable as long as annual effective dose << 1 mSv
- Analysis only by gamma spectrometry → quick results and low cost.

Feedback

- Aerosol analysis by gamma spectrometry: detection treshold leading to doses of several mSv per year
 - → ashes and soot analysis used for dose assessment
- Some nuclides taken into account that might not be in the samples (thorium 232)
- Service engineer : measurement not feasible inside the boiler while in service
 - → uncertainty on external exposure

Prospects

- In situ radiometry and gamma spectrometry compulsory for a quick penalizing dose assessment
- Collecting aerosol on gravimetric impactor for accurate inhalation dose assessment
- Raw material, products and effluents sampling enabling easy preparation for alpha spectrometry