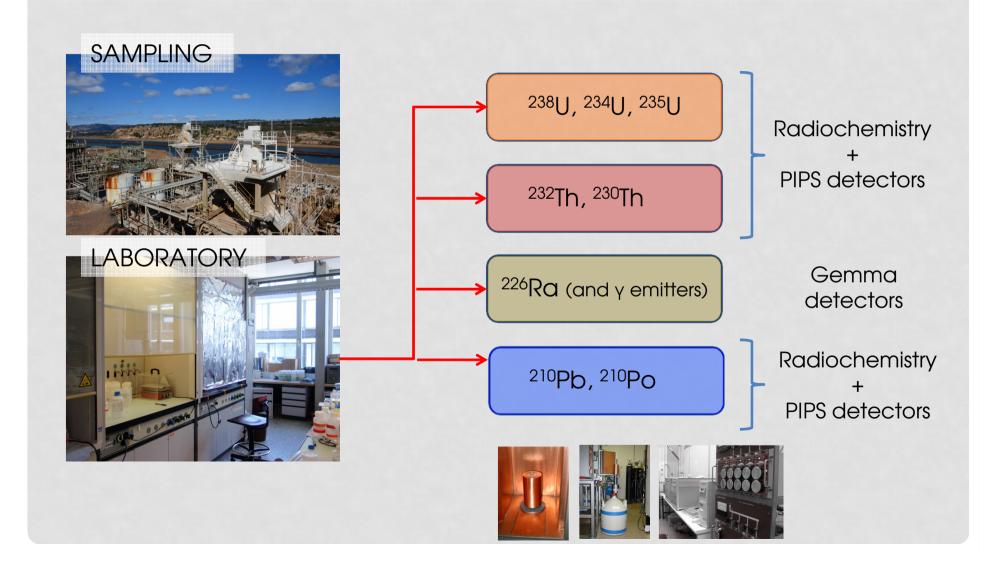
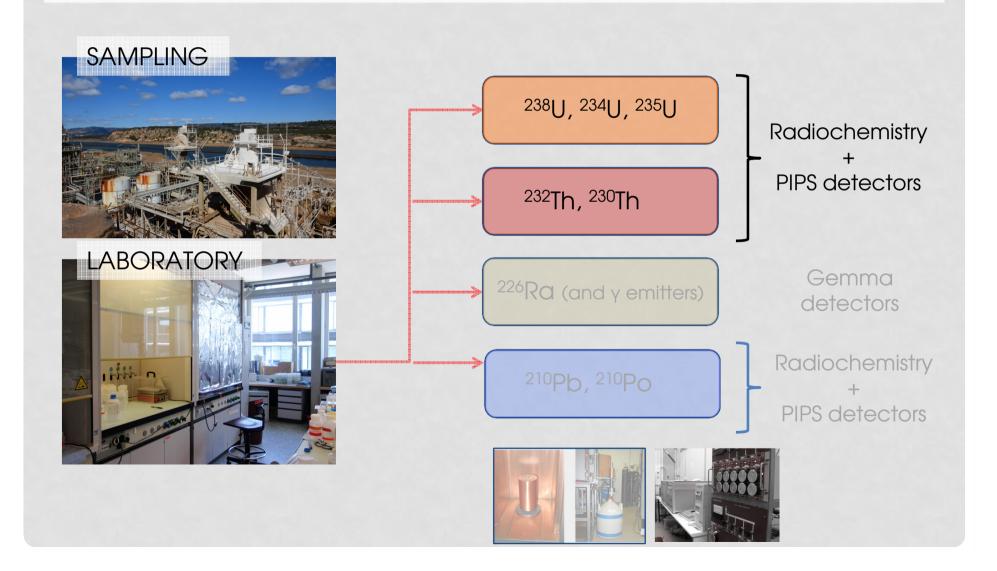
URANIUM AND THORIUM-ISOTOPES RADIOCHEMICAL SEPARATION AND QUANTIFICATION OF NORM SAMPLES BY ALPHA-SPECTROMETRY

NÚRIA CASACUBERTA J. MANTERO, M. LEHRITANI, J. GARCIA-ORELLANA, P. MASQUÉ & R. GARCÍA-TENORIO

5th EAN_{NORM} WORKSHOP - 4th December 2012

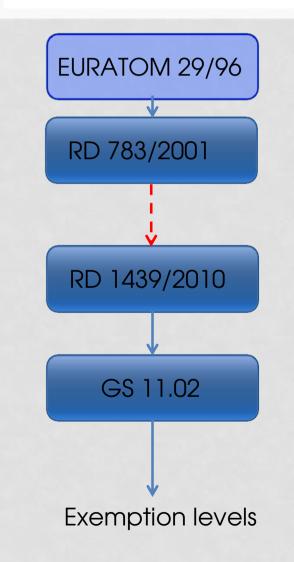


OUTLINE


INTRODUCTION

- ANALYSIS OF NORM SAMPLES IN OUR LABORATORY
- WHY URANIUM AND THORIUM ISOTOPES?
- CLASSICAL METHODS FOR U AND Th SEPARATION
- AIMS OF THIS STUDY
- MATERIALS, METHODS AND RESULTS
 - LIQUID-LIQUID EXTRACTION vs. EXTRACTION CHROMATOGRAPHY IN ENVIRONMENTAL SAMPLES.
 - EXTRACTION CHROMATOGRAPHY (UTEVA) IN NORM SAMPLES.
 - REUSE OF UTEVA COLUMNS FOR THE ANALYSIS OF NORM SAMPLES.
- CONCLUSIONS.

NORM SAMPLES: LABORATORY ANALYSIS



NORM SAMPLES: LABORATORY ANALYSIS

URANIUM AND THORIUM IN NORM SAMPLES (SPANISH LEGISLATION)

Anexo A

Radionucleido	Todos los materiales	Lodos húmedos de industrias de petróleo y gas			
U-238 (sec) incl. U-235 (sec)	0,5	5			
U natural	5	100			
Th-230	10	100			
Ra-226+	0,5	5			
РЬ-210+	5	100			
Po-210	5	100			
J-235 (sec)	1	10			
U-235 +	5	50			
Pa-231	5	50			
Ac-227+	1	10			
Ch-232 (sec)	0,5	5			
Th-232	5	100			
Ra-228+	1	10			
Гh-228+	0,5	5			
K-40	5	100			

Niveles de exención/desclasificación en kBq/kg (Bq/g)

.

CLASSICAL METHODS FOR U AND TH DETERMINATION

- Liquid-liquid extraction
- Anion exchange resins

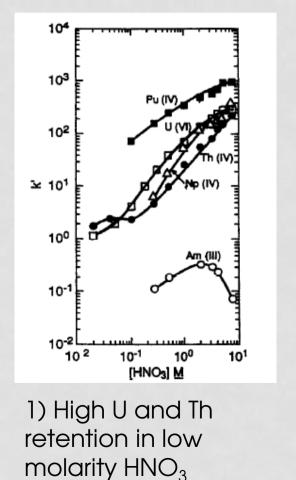
URANIUM PURIFICATION:

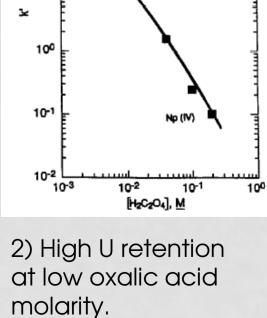
- from Rare Earth Elements.

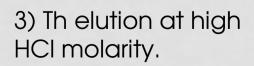
- from Th isotopes. - from interferring elements: Fe, Ca, Na.

- Time consuming.
- Generate substantial volumes of organicwaste.
- Have limited effectiveness in removing certain common matrix components (e.g. Iron)

AN ALTERNATIVE MATERIAL: DIAMYL AMYLPHOSPHONATE


U (VI)


103


102

101

Horwitz et al. (1992; 1995)

[HCI] <u>M</u>

10⁰

Np (IV)

Th (IV)

10¹

10²

104

10³

10²

™ 10¹

100

10¹

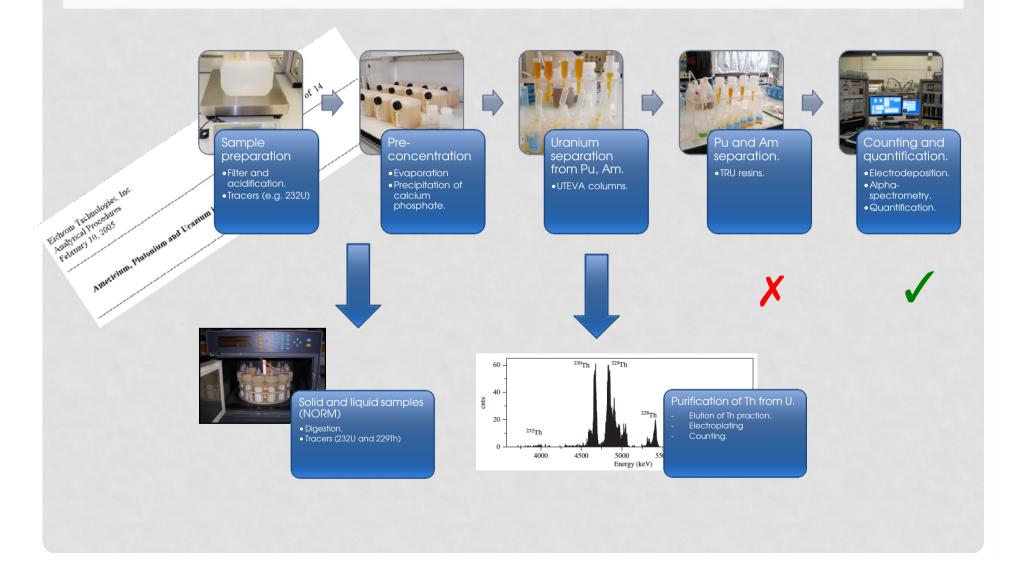
 10^{-2}

10-1

EXTRACTION CHROMATOGRAPHY USING UTEVA COLUMNS (EICHROM)

Horwitz et al. (1992; 1995)

- Simple and effective method for separation and pre-concentration of U from aquous solution.
- Other components such as Na, Fe and Ca are unretained in the resin.
- Encouraged its application (e.g. in nuclear waste).


AIMS OF THIS STUDY

 Extraction chromatography as an alternative method for U and Th determination in NORM samples.

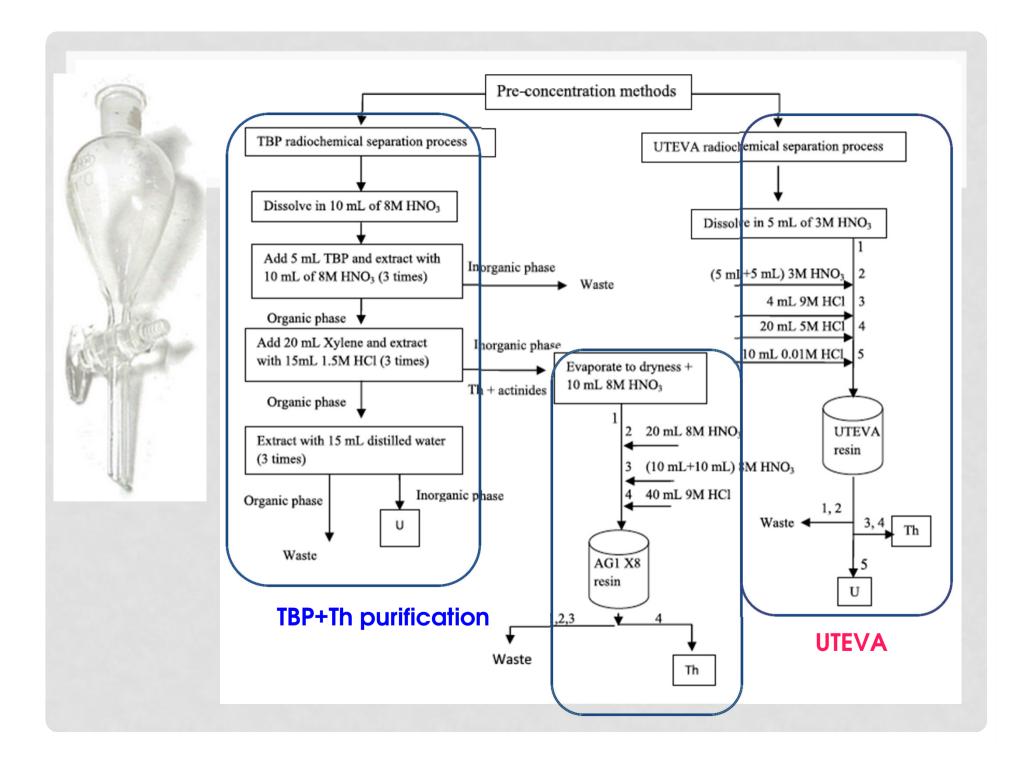
• Specific aims:

- Compare extraction chromatograpy with liquid-liquid extraction (TBP) in environmental samples.
- Adapt the method publised by Eichrom for the quantification of Th isotopes in NORM samples
- Test the cleaning of the UTEVA columns after its usage.

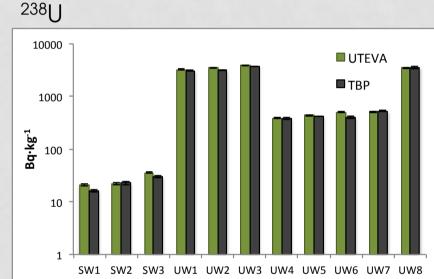
EXTRACTION CHROMATOGRAPHY ADAPTED TO NORM SAMPLES

SAMPLES ANALYZED:

- Reference materials
 - Liquid: IAEA-2008-03.
 - Solid: phosphogypsum IAEA-2008-.
- Environmental samples:
 - Water
 - Surface river samples (Guadalquivir).
 - Underground waters (uraniunm mining Spain)
 - Sediment
 - Riverbed sediment samples.

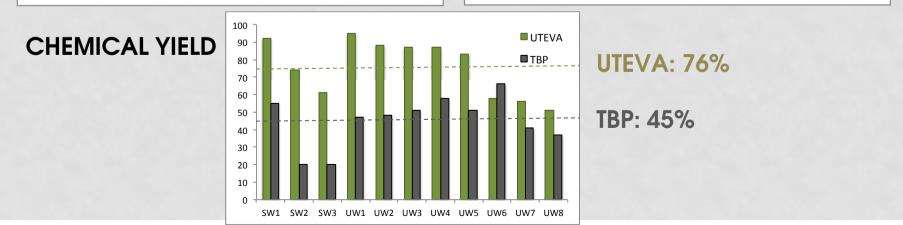

ANALYTICAL METHODS:

- LIQUID-LIQUID SOLVENT EXTRACTION (TBP).
- EXTRACTION CHROMATOGRAPHY (UTEVA).

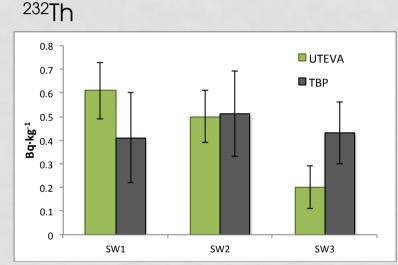

EVALUATION CRITERIA:

$$Z\text{-score} = \frac{\text{Value}_{\text{reported}} - \text{Value}_{\text{target}}}{0.10 \text{ Value}_{\text{target}}}$$

where "Value_{reported}" means the obtained result using UTEVA procedure and "Value_{target}" is the reference value in the standard or reference sample. If |Z-score $| \le 2$, the reported value will be considered as satisfactory; it would be questionable if |Z-score $| \le 3$; and unsatisfactory if |Z-score $| \ge 3$.



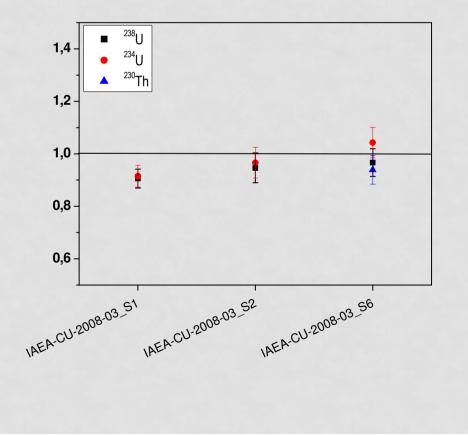
URANIUM in WATERS



234[]



THORIUM in WATERS


²³⁰Th 9 UTFVA 8 ■ ТВР 7 6 **1**−**3** 5 4 1 3 2 1 0 SW1 SW2 SW3

EVALUATION CRITERIA OF EXTRACTION CHROMATOGRAPHY

IAEA-2008-03 proficiency test

- i) Liquid samples S1 and S2 (1 replicate)
- ii) Phosphogypsum S6 (3 replicates)

- i) Good accuracy: Low Relative bias was (3-9%).
- ii) Z-score < 1
- iii) u-score < 2.58

ADVANTAGES OF EXTRACTION CHROMATOGRAPHY vs. LIQUID-LIQUID SOLVENT EXTRACTION

Concept	TBP+Th purification	UTEVA			
Time separation process	4 hours (2 h TBP + 2 h Th purification)	2 hours			
Reagents needed	5 mL TBP	15 mL 3M HNO ₃			
	20 mL xylene	(4 mL 9M+20 mL 5M+10 mL 0.01M) HCl			
	80 ml 8M HNO ₃	1 UTEVA column			
	45 mL distilled H_2O				
	7.5 g AG1X8 resin				
Generated Wastes	5 mL TBP	15 mL 3M HNO ₃			
	29 mL Xylene	UTEVA column			
	30 mL 8M HNO ₃				
	7.5 g AG1X8 resin				

EXTRACTION CHROMATOGRAPHY (UTEVA) IN NORM SAMPLES

SAMPLES ANALYZED:

- Phosphate industry (DCP production):
 - Phosphate rock.
 - Sludges.
 - Dicalcium phosphate.

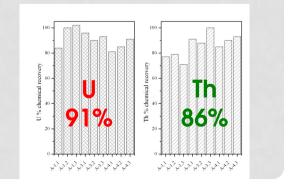
ANALYTICAL METHODS:

- EXTRACTION CHROMATOGRAPHY (UTEVA).

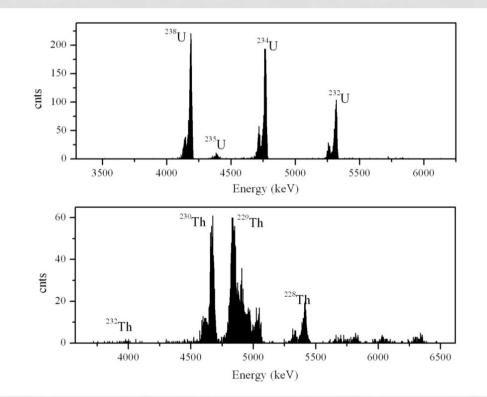
SPECIFIC AIM:

- Test the extraction chromatography adapted method to NORM samples.
- Test the reuse of UTEVA columns after its use.

EXTRACTION CHROMATOGRAPHY (UTEVA) IN NORM SAMPLES

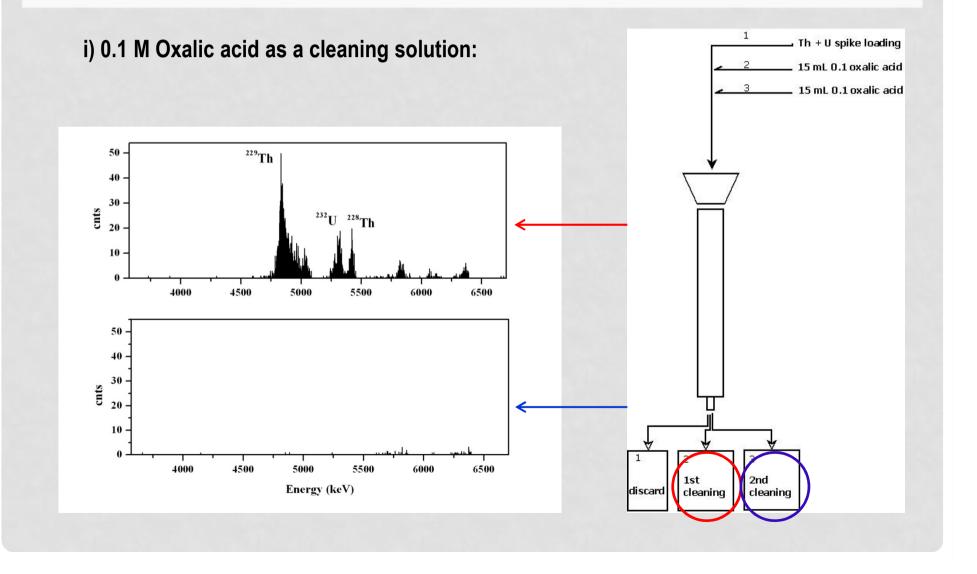

Table 3

Results on the activity concentrations (A), uncertainties (ΔA), average values (\overline{A}) and standard deviation (σ_{n-1}) of NORM samples obtained from a DCP production plant. Uncertainties and standard deviation are expressed in % at 1 σ . Chemical yields (ρ) for each sample are also indicated.

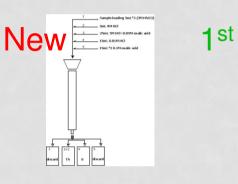

Sample code $\frac{^{238}U (Bq kg^{-1})}{A \qquad \Delta A \qquad \tilde{A} \qquad \sigma_{n-1}} (\%)$		²³⁵ U (Bq kg ⁻¹)			²³⁴ U (Bq kg ⁻¹)			ho ²³² Th (Bq			q kg ⁻¹) ²³⁰ Th		²³⁰ Th ((Bq kg ⁻¹)			ρ					
	A		Ā		A	ΔA (%)	Ā	σ _{n-1} (%)	A	ΔA (%)		σ _{n-1} (%)	(U) %	A	ΔA (%)	Ā	σ _{n-1} (%)	A	ΔA (%)	Ā	σ _{n-1} (%)	- (Th) %
A-1.1 1	1733	4	1706	5	53	12	60	15	1697	4	1690	5	84	24	14	22	8	1750	6	173	3	77
	1778				58				1773				100		18				6			79
	1607				70	11			1600				102	22				1769	6			71
A-3.1 4	4676	4	5036	7	185	10	193	7	5870	4	6287	6	96	136	8	138	5	10144	5	10,0	90 8	91
	5333	4			186				6615				90	147				10,871				88
A-3.3 5	5098	3			207	6			6375	3			93	132	13			9253	8			100
A-4.1 4	4017	6	3993	1	161	13	154	4	5451	5	5216	4	81	113	14	119	14	8976	8	861	4	85
A-4.2 3	3956	5			153	13			5022	5			85	138	14			8277	8			90
	4007				147				5174				91		11			8600				93

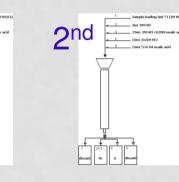
GOOD PRECISION AND REPRODUCIBILITY.

OPTIMUM CHEMICAL RECOVERIES.



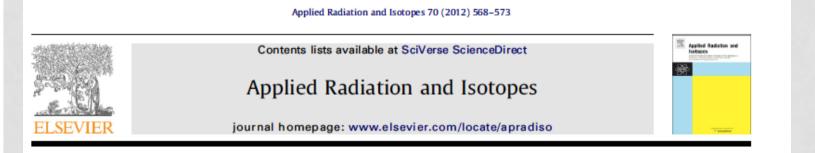
EXTRACTION CHROMATOGRAPHY (UTEVA) IN NORM SAMPLES


GOOD SPECTRA RESOLUTION (FWHM = 27 16 keV for 238 U and 230 Th, respectively)


REUSE OF UTEVA COLUMNS FOR NORM SAMPLES

REUSE OF UTEVA COLUMNS FOR NORM SAMPLES

ii) 1st and 2nd UTEVA recycle:


25mL 5M HCl+

Sample	UTEVA usage	²³⁸ U	²³⁵ U	²³⁴ U	ρ(U)	²³⁰ Th	ρ(Th)
		(Bq·kg ^{·1})	(Bq ·kg ⁻¹)	(Bq·kg ^{·1})		(Bq·kg ⁻¹)	
A-1.1	New UTEVA	1733 ± 71	53 ± 7	1697 ± 70	84%	1750 ± 101	77%
A-1.2		1778 ± 67	58 ± 6	1773 ± 67	100%	1671 ± 98	79%
A-1.3	resins	1607 ± 64	70 ± 8	1600 ± 63	101%	1769 ± 107	71%
A-1.1R1	1st UTEVA	1695 ± 66	68 ± 7	1603 ± 63	99%	1635 ± 90	66%
A-1.2R1	recycle	1692 ± 64	63 ± 7	1645 ± 63	98%	1643 ± 105	11%
A-1.3R1		1700 ± 63	55 ± 6	1628 ± 61	102%	1711 ± 101	49%
A-1.1R2		1601 ± 96	64 ± 11	1566 ± 95	97%	1788 ± 95	77%
A-1.2R2	2on UTEVA recycle	1752 ± 107	55 ± 11	1635 ± 101	98%	1598 ± 93	93%
A-1.3R2		1616 ± 96	58 ± 11	1658 ± 98	102%	1696 ± 95	71%
Average New	UTEVA	1706 ± 127	60 ± 13	1690 ± 126	95%	1730 ± 180	76%
Average 1st U	UTEVA recycle	1696 ± 112	62 ± 12	1625 ± 109	100%	1663 ± 173	42%
Average 2nd	UTEVA recycle	1656 ± 179	59 ± 19	1619 ± 172	99%	1647 ± 172	80%

CONCLUSIONS

- Advantages of extraction chromatography (UTEVA) compared to liquid-liquid solvent extraction (TBP):
 - Greater chemical yields for U and Th in extraction chromatography.
 - Remove interferring elements more efficiently.
 - Faster and simpler in its application.
 - Generates less laboratory wastes.
- Extraction chromatography (UTEVA) in NORM samples:
 - Optimum accuracy and precision of the technique.
 - UTEVA resins can be reused at least three times, reducing its economical costs.

PUBLISHED PAPERS

Determination of U and Th α -emitters in NORM samples through extraction chromatography by using new and recycled UTEVA resins

N. Casacuberta^{a,*}, M. Lehr

^a Institut de Ciència i Tecnologia Ambientals-^b Universidad de Sevilla, Avda, Reina Merced

Radiochim, Acta / DOI 10.1524/ract.2012.1933 © by Oldenbourg Wissenschaftsverlag, München

Comparison of two sequential separation methods for U and Th determination in environmental samples by alpha-particle spectrometry

By M. Lehritani¹, J. Mantero^{1,*}, N. Casacuberta², P. Masqué² and R. García-Tenorio^{1,3}

¹ Departamento de Física Aplicada II, E.T.S.A., Universidad de Sevilla, Sevilla, Spain

- ² Institut de Ciència i Tecnologia Ambientals Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
 ³ Centro Nacional de Aceleradores, Sevilla, Spain

.

Institut de Ciència i Tecnologia Ambientals-UAB

THANK YOU!

URANIUM AND THORIUM-ISOTOPES RADIOCHEMICAL SEPARATION AND QUANTIFICATION OF NORM SAMPLES BY ALPHA-SPECTROMETRY

5th EAN_{NORM} WORKSHOP - 4th December 2012

NÚRIA CASACUBERTA