Radon in an underground NORM repository

Per Varskog, Norse Decom AS, Norway Hartmut Schulz, IAF Radioökologie GmbH, Germany

Hasselt, 30 November 2011

Stangeneset NORM Disposal Site

Typical Activity Ranges in Sludge and Scale

Oil company	Activity concentration (Bq/g)				
	²²⁶ Ra ²²⁸ Ra		²¹⁰ Pb		
Company A	21.5 (9.7 – 74.1)	11.2 (3.3 – 28.9)	2.4 (<0.2 – 11.8)		
Company B	19.3 (16.3-23.6)	7.3 (6.4-8.6)	2.7 (2.0-3.7)		
Company C	20.8	9.6	1.8		
Company D	40.4 (4.9-100)	3.7 (0.4-13-3)	13.8 (2.3-49)		

Safe Disposal of NORM

N O R S E D E C O M

• OKOLOGIE GmbH

Typical Drums in Repository

Radon by passive dosimeters Measurement period 10.11.11 – 01.02.11

Radon by passive dosimeters Measurement period 10.11.11 – 01.02.11

Safe Disposal of NORM

Why is the Radon Concentration so Moderate?

Walls: gneissic rock Ground Floor: concrete Barrels: mostly closed

Why is the radon concentration fairly moderate inside the repository?

Radon Generation of Dry Scales

in a closed tubing 25.000 Bq/m³ of radon could be reached

[thickness]	Ra-226	[exhalation rate]	[exhalation rate]	[diffusion parameter]
[mm]	[Bq/g]	[Bq/(m² s)]	[Bq/(m ² h)]	[m²/s]
2,7	440	0,0068	25	5,5·10 ⁻¹⁸

Radon Generation of Sludge

Practically radon exhalation of sludge of minor importance

Why?

	K _d
Diesel / Water	39,8 ± 4
Benzine / Water	$52,3 \pm 6$
Air / Water	≈ 4

Exhalation Rates of Gneissic Rocks and Concrete

Material	Ra-226 Bq/kg		Th-232 Bq/kg		K-40 Bq/kg	
	mean value	interval	mean value	interval	mean value	interval
Granite	100	(30 - 500)	120	(17 - 311)	1000	(600 - 4000)
Gneissic rock	75	(50 - 157)	43	(22 - 50)	900	(830 - 1500)

Material	Emanation E		
	mean value		
Granite	0,33		
Gneissic rock	0,14		

emanation

Material	Exhalation rate	
	[Bq /(m ² h)]	
concrete	1 - 20	
Gneissic rock	1 - 3	

	exhal	ation	rate
--	-------	-------	------

Case study: time evolution of the radon concentration in the repository

- No ventilation: constant Radon concentration
- Temperature changes according to ventilation
- Drop in temperature associated with radon reduction and vice verse

Work in Conditioning Tunnel Pallet Unpacking (closed drums)

Work in Conditioning Tunnel Weighing (closed drums)

Work in Conditioning Tunnel Drum Topping (open drums)

Work in Conditioning Tunnel Transport to Repository (closed drums)

Radon in Conditioning Tunnel (30.11.10 – 13.01.11)

Radon doses, equilibrium factor i=0,4

2010		Radon dose (μSv)		
	Hours	Maximum (550 Bq/m³)	Work, vent OFF (350 Bq/m³)	Work, vent ON (50 Bq/m³)
Worker 1	80,5	0,138	0,088	0,013
Worker 2	66,5	0,114	0,073	0,010
Worker 3	60,0	0,103	0,066	0,009
2011		Radon dose (μSv)		
	Hours	Maximum (550 Bq/m³)	Work, vent OFF (350 Bq/m³)	Work, vent ON (50 Bq/m³)
Worker 1	118,0	0,202	0,129	0,018
Worker 2	64,5	0,111	0,070	0,010
Worker 3	52,5	0,090	0,057	0,008

Conclusions

- During the 40 days monitoring period the radon concentration in the repository was found to vary between 550 Bq/m3 and 50 Bq/m³ with the lower value as the typical working condition.
- The resulting doses received by workers are low: less than 0.1 μSv/year.
- Ventilation effectively reduces the radon concentration (Outdoor radon typically 10 Bq/m3)
- Case study shows that the tunnel walls are the main contributor to the radon in the repository.