Fluxes of the 238U series within the Dicalcium Phosphate industrial production and the biokinetical analysis of 210Pb and 210Po in broilers due to its ingestion

N. Casacuberta, P. Masqué, J. Garcia-Orellana, F.L. Traversa, J. Gasa, M. Anguita, F. España & R. Garcia-Tenorio

6th International Symposium on Naturally Occurring Radioactive Materials
March 2010 Marrackech
Outline

• Introduction
 – Dicalcium phosphate (DCP)
 – Radionuclide incorporation to chickens due to ingestion of DCP
 – Aims of the work

• Materials & methods

• Results (and discussion)
 – Fluxes of radionuclides in the DCP production process
 – Accumulation of 210Pb and 210Po in chickens and a biokinetical approach.

• Conclusions
Dicalcium Phosphate

- Dicalcium Phosphate is a calcium feed supplement for domestic animals (cattle, poultry, etc.).

- High calcium availability (93%).

- Produced through the rock acid digestion with either HCl or H$_2$SO$_4$ (Gäfvert et al., 2001).

- Replacement of calcium by uranium in the apatite structure

238U > 103 Bq·kg$^{-1}$
(Burnett and Veeh., 1992)
Dicalcium Phosphate

- Previous studies shown that depending on the acid used, different radionuclides are accumulated in the final product (Casacuberta et al., 2009).

Specific concentrations $^{210}\text{Pb} \sim 2000 \text{ Bq} \cdot \text{kg}^{-1}$ and $^{210}\text{Po} \sim 800 \text{ Bq} \cdot \text{kg}^{-1}$
Radionuclide incorporation in animals

- ^{210}Pb and ^{210}Po are of special interest since its accumulation in food might pose a potential radiological dose by ingestion. $h(g) \, ^{210}\text{Pb} = 6.9 \cdot 10^{-7} \text{ Sv} \cdot \text{Bq}^{-1}$; $h(g) \, ^{210}\text{Po} = 1.2 \cdot 10^{-6} \text{ Sv} \cdot \text{Bq}^{-1}$

- Accumulation of radionuclides in animals and humans depends on:
 - the rate of intake,
 - gastrointestinal absorption, and
 - turnover in tissues.
Aims of the work

• Elucidate the fluxes of the isotopes of the ^{238}U decay series in the production process of DCP;

• Examine the accumulation of ^{210}Pb and ^{210}Po in chicken tissues during its growth as a function of the type and amount of DCP in chicken diets as well as its contents of radionuclides; and

• Build a suitable kinetic model to understand the distribution of ^{210}Pb and ^{210}Po within chicken tissues after ingestion.
Materials and Methods

- Fluxes of radionuclides within the DCP production process;
 - Sampling
 - Radionuclide analysis

- Accumulation of 210Pb and 210Po in chickens;
 - Experimental set-up
 - Biokinetic model for 210Pb and 210Po in chickens.
Industrial samples

x 3 sampling dates:
- May 2007
- November 2007
- April 2008
Radionuclides analysis

- 238U, 234U, 230Th: radiochemical purification (Horwitz et al., 1992), electrodeposition and alpha spectrometry (EG&Ortec Mod. SSB 450 R).

- 226Ra: gamma spectrometry (GMX,EG&G Ortec): 214Pb (295, 351 keV) and 214Bi (609 keV).

- 210Pb, 210Po: acid digestion, deposition of 210Po in silver disks and alpha spectrometry. Ingrowth decay corrections of 210Pb and 210Po at sampling date (Masqué et al., 2002).
Accumulation of ^{210}Pb and ^{210}Po in chickens

Diet A: blank diet (~2 Bq·kg$^{-1}$ ^{210}Pb and ^{210}Po)

Diet B: 2.5% DCP* (~60 Bq·kg$^{-1}$ ^{210}Pb and ^{210}Po)

Diet C: 5% DCP* (~100 Bq·kg$^{-1}$ ^{210}Pb and ^{210}Po)

* DCP: 1700 Bq·kg$^{-1}$ ^{210}Pb and ^{210}Po
Results and discussion

- Fluxes of radionuclides within the DCP production process.
- Accumulation of ^{210}Pb and ^{210}Po in chickens.
- Biokinetic model for ^{210}Pb and ^{210}Po in chickens.
Fluxes of radionuclides within the DCP production process
RESULTS

Fluxes in the sludges line (kBq·h⁻¹)

![Diagram showing the sludges line process]

Sludges line

- **Phosphate rock** → **digestor** → **decanter 1** → **Redigestion** → **decanter 2** → **decanter 3** → **Sludge filter** → **Sludges**

Fluxes in the sludges line (kBq·h⁻¹):

- **S1**
 - S1_1st
 - S1_2nd
 - S1_3rd

- **S3**
 - S3_1st
 - S3_2nd
 - S3_3rd

- **S9**
 - S9_1st
 - S9_2nd
 - S9_3rd

Isotopes:

- 238U
- 230Th
- 226Ra
- 210Pb
- 210Po
Fluxes in DCP production line (kBq·h\(^{-1}\))

RESULTS
RESULTS

Fluxes waters and recirculation line (kBq·h⁻¹)

![Graph showing fluxes waters and recirculation line with bars for different samples S8_1st, S8_2nd, S8_3rd.]

- **238U**, **230Th**, **226Ra**, **210Pb**, and **210Po** markers are used to indicate different isotopes or elements.

Notes:
- S7
- Fluxes waters and recirculation line (kBq·h⁻¹)

![Diagram showing residual waters line and decanter 4 connection.]

Diagram Details:
- Residual waters line
- Decanter 4
- Residual water

Legend:
- Yellow: 238U
- Orange: 230Th
- Red: 226Ra
- Green: 210Pb
- Purple: 210Po
Radionuclide outputs

- U-238: 54%
- Th-230: 95%
- Ra-226: 61%
- Pb-210: 86%
- Po-210: 4%

Legend:
- Sludges
- DCP
- Water effluent
RESULTS

Specific concentrations of radionuclides

PHOSPHATE ROCK

SLUDGES

DCP

WATER DISCHARGES

- 238U
- 230Th
- 226Ra
- 210Pb
- 210Po

[Graphs showing specific concentrations of radionuclides in different matrices: Phosphate Rock, Sludges, DCP, and Water Discharges.]
Exemption and clearance criteria

New European Basic Safety Standards:

The exempt activity concentration values (Bq·g⁻¹) for the materials involved in the practice for Naturally Occurring Radionuclides is:

- Natural radionuclides from the U-238 series: 1 kBq·kg⁻¹
- Natural radionuclides from the Th-232 series: 1 kBq·kg⁻¹
- K-40: 10 kBq·kg⁻¹

Some elements in the decay chain, e.g. ²¹⁰Pb and ²¹⁰Po may warrant the use of values by up to two orders of magnitude.
Exemption and clearance criteria

PHOSPHATE ROCK

SLUDGES

DCP

WATER DISCHARGES

- \(^{238}\)U
- \(^{230}\)Th
- \(^{226}\)Ra
- \(^{210}\)Pb
- \(^{210}\)Po

\[\text{Bq·kg}^{-1} \]

\[\text{Bq·m}^{-3} \]
Accumulation of 210Pb and 210Po in chickens due to the ingestion of DCP
Accumulation of ^{210}Pb and ^{210}Po in broilers

RESULTS

Accumulation of ^{210}Pb and ^{210}Po in broilers over 21 and 42 days of feeding.
Accumulation of ^{210}Pb and ^{210}Po in feces
Biokinetic model: first order approach

Single-compartment model: **STEADY STATE CONDITIONS**

\[
\frac{d}{dt} x(t) = -\lambda x(t) - Kx(t) + b(t)
\]

- \(x(t) \) specific activity of \(^{210}\text{Pb} \) and \(^{210}\text{Po} \) into the chicken body (whole animal);
- \(b(t) \) input of \(^{210}\text{Pb} \) and \(^{210}\text{Po} \) to the chicken;
- \(Kx(t) \) output rate of \(^{210}\text{Pb} \) and \(^{210}\text{Po} \);
- \(\lambda x(t) \) radioactive decay (also includes \(^{210}\text{Po} \) ingrowth from \(^{210}\text{Pb} \) decay)
First order model results: whole animal

Diet B, ^{210}Pb

Diet C, ^{210}Pb

Diet B, ^{210}Po

Diet C, ^{210}Po
Biokinetic model: non-linear approach

Single-compartment model: NON STATIONARY CONDITIONS

\[
\begin{aligned}
\frac{d}{dt} [x(t)p(t)] &= -\lambda x(t)p(t) - k(t)x(t)p(t) + b(t) + x(t) \frac{d}{dt} p(t) \\
K(t) &= k_x \frac{F(t)}{p(t)} \overline{p} = k_x N(t)
\end{aligned}
\]

- \(F(t)\) food weight
- \(p(t)\) animal weight
- \(k_x\) transfer rate at stationary state
- \(F\) food weight at stationary state
- \(\overline{p}\) animal weight at stationary state
RESULTS

Diet B, 210Pb and 210Po

$K (^{210}\text{Pb}) = 3.20 \pm 0.41$

$K (^{210}\text{Po}) = 1.26 \pm 0.06$

$K = [\text{d}^{-1}]$

Diet C, 210Pb and 210Po

$K (^{210}\text{Pb}) = 4.65 \pm 0.61$

$K (^{210}\text{Po}) = 1.84 \pm 0.25$
Conclusions: fluxes of radionuclides in DCP industrial process

- About $30 \cdot 10^3$ kBq·h$^{-1}$ of 238U, 230Th, 226Ra, 210Pb and 210Po enter the production system.
 - 238U out-fluxes are divided between sludges and DCP.
 - 230Th and 210Po are discharged in sludges.
 - 226Ra is mainly eluted through water effluents.

- Limits of radionuclides established in the new BSS are 1 kBq·kg$^{-1}$. DCP industries are not exempted.
 - > 10^3 Bq·kg$^{-1}$ of 238U
 - > 10^4 Bq·kg$^{-1}$ of 230Th and 210Po
 - > $2 \cdot 10^3$ Bq·kg$^{-1}$ of 210Pb
 - 226Ra?
Conclusions: ^{210}Pb and ^{210}Po in chickens

- ^{210}Pb and ^{210}Po are accumulated in chicken tissues proportional to the initial contents in diets.
 - ^{210}Pb accumulates in bones
 - ^{210}Po accumulates in liver and kidneys
 - Accumulation is small compared to the amounts excreted.

- First order kinetic approach model would not fit the experimental data due to the fact that the model does not take into account the growing conditions of the organism.

- A model based on a non-stationary based function is capable to model the experimental results when growing conditions occur. Allows calculation of transfer rates k useful for first-order models if extrapolating $k(t)$ when t tends to a steady state.
Fluxes of the ^{238}U series within the Dicalcium Phosphate industrial production and the biokinetical analysis of ^{210}Pb and ^{210}Po in broilers due to its ingestion

Nuria.Casacuberta@uab.es